Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Sorption Isotherms and Thermodynamics of Direct Dye onto the Nano Poly(amidoamine) Dendrimer Treated Jute Yarn

Author(s): Ali A. Zolriasatein*

Volume 10, Issue 5, 2020

Page: [673 - 681] Pages: 9

DOI: 10.2174/2210681209666190412141442

Price: $65

Abstract

Background: In this study, the poly(amidoamine) (PAMAM) G-2 dendrimer was applied to the jute yarn.

Methods: Untreated and dendrimer treated jute yarns were then dyed with Direct Yellow 24. Thermodynamic parameters of dyed samples, free energy (ΔG°), the enthalpy (ΔH°), and the entropy (ΔS°) were also evaluated.

Results: Dendrimer treated jute yarn showed higher dye sorption compare to untreated jute yarn. The values of ΔH° and ΔG° indicated that the sorption process was exothermic and spontaneous at low temperature.

Conclusion: Freundlich isotherm was found to be the optimum isotherm for untreated and BET isotherm defined for dendrimer treated jute yarn.

Keywords: Isotherm, thermodynamics, dyeing, direct dye, dendrimer, jute.

Graphical Abstract
[1]
Salam, M.A.; Sheik, R.K.; Farouique, F.I. Textile and appreal supply chain for the 21st century. J. Textile Apparel Technol. Manage., 2006, 5, 1.
[2]
Zhang, F.; Chen, Y.Y.; Lin, H.; Lu, Y.H. Synthesis of an amino‐terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt‐free dyeing auxiliary. Coloration. Technol., 2007, 123, 351.
[3]
Balogh, L.; Swanson, D.R.; Tomalia, D.A.; Hagnauer, G.L.; McManus, A.T. Dendrimer− silver complexes and nanocomposites as antimicrobial agents. Nano Lett., 2001, 1, 18.
[4]
Aymonier, C.; Schlotterbeck, U.; Antonietti, L.; Zacharias, P.; Thomann, R.; Tiller, J.C.; Mecking, S. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun., 2002, 24, 3018.
[5]
Mahapatra, S.S.; Karak, N. Silver nanoparticle in hyperbranched polyamine: Synthesis, characterization and antibacterial activity. Mater. Chem. Phys., 2008, 112, 1114.
[6]
Igoris, P.; Asta, T.; Asta, G.; Diana, A.; Judita, P.; Oleg, A. Formation of Silver-PAMAM dendrimer nanocomposites using electromagnetic radiation. Mater. Sci. [MEDŽIAGOTYRA], 2010, 16, 7.
[7]
Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surfaces. B , 2010, 81, 32.
[8]
Zolriasatein, A.A.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A.S. The application of poly (amidoamine) dendrimers for modification of jute yarns: Preparation and dyeing properties. J. Saudi Chem. Soc., 2015, 19, 155.
[9]
Khanafari, A.; Ahmadi-Fakhr, F. An analogical study of toxicity and anti-proliferation. American-Eurasian. J. Toxicol. Sci., 2010, 2, 203.
[10]
Esfand, R.; Tomalia, D.A. Laboratory synthesis of poly(amido amine) dendrimers. In: Dendrimers and other dendritic polymers.Frechet, J.M.J.; Tomalia, D.A. Eds.; John Wiley & Sons Ltd.; Baffins Lane, Chichester ; , 2002, pp. 587-604.
[11]
Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S. Barthe’s, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem., 2007, 22, 249.
[12]
Demir, H.; Top, A.; Balkse, D.; Ulku, S. Dye adsorption behavior of Luffa cylindrica fibers. J. Hazard. Mater., 2008, 153, 389.
[13]
Chung-Hsin, W. Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J. Hazard. Mater., 2007, 144, 93.
[14]
Allen, S.J.; Mckay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci., 2004, 280, 322.
[15]
Liu, Y.; Liu, Y.J. Biosorption isotherms, kinetics and thermodynamics. Separat. Purifcat. Technol., 2008, 61, 229.
[16]
Maarof, H.I.; Hameed, B.H.; Ahmad, A.L. Equilibrium adsorption study of 3-chlorophenol and o-cresol on modified montmorillonite. Proc. Ann. Semin. Nat. Sci. Fellowship, 2004, 2004, 591.
[17]
Özcan, A.S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite. J. Colloid Interface Sci., 2004, 280, 44.
[18]
Ramachandran, P.; Vairamuthu, R.; Ponnusamy, S. Adsorp-tion isotherms, kinetics, thermodynamics and desorption studies of reactive orange16 on activated carbon derived from Ananas comosus (L.) carbom. ARPN J. Eng. Appl. Sci, 2011, 6(11), 15.
[19]
Vieira, A.P.; Santana, S.A.A.; Bezerra, C.W.B.; Silva, H.A.S.; Chaves, J.A.P.; deMelo, J.C.P.; da Silva Filho, E.C.; Airoldi, C. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. J. Hazard. Mater., 2009, 166, 1272.
[20]
Kuo, C.Y.; Wu, C.; Wu, J.I. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. J. Colloid Interface Sci., 2008, 327, 308.
[21]
Abramian, L.; El-Rassy, H. Adsorption kinetics and thermo-dynamics of azo-dye Orange II onto highly porous titania aerogel. Chem. Eng. J., 2009, 150, 403.
[22]
Tan, K.B.; Abdullah, A.Z.; Amini Horri, B.; Salamatinia, B. Adsorption mechanism of microcrystalline cellulose as green adsorbent for the removal of cationic methylene blue dye. Chem. Soc. Pak, 2016, 38, 651.
[23]
Carter, M.C.; Kilduff, J.E.; Weber, W.J. Site energy distribution analysis of preloaded adsorbents. Environ. Sci. Technol., 1995, 29, 1773.
[24]
Derakhshan, Z.; Baghapour, M.A.; Ranjbar, M.; Faramarzian, M. Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies. Health Scope, 2013, 2(3), 136.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy