Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Comparative Drug Resistance Reversal Potential of Natural Glycosides: Potential of Synergy Niaziridin & Niazirin

Author(s): Gaurav R. Dwivedi, Anupam Maurya, Dharmendra K. Yadav, Feroz Khan, Mahendra K. Gupta, Prashant Gupta, Mahendra P. Darokar* and Santosh K. Srivastava*

Volume 19, Issue 10, 2019

Page: [847 - 860] Pages: 14

DOI: 10.2174/1568026619666190412120008

Price: $65

Abstract

Background: Due to the limited availability of antibiotics, Gram-negative bacteria (GNB) acquire different levels of drug resistance. It raised an urgent need to identify such agents, which can reverse the phenomenon of drug resistance.

Objective: To understand the mechanism of drug resistance reversal of glycosides; niaziridin and niazirin isolated from the pods of Moringa oleifera and ouabain (control) against the clinical isolates of multidrug-resistant Escherichia coli.

Methods: The MICs were determined following the CLSI guidelines for broth micro-dilution. In-vitro combination studies were performed by broth checkerboard method followed by Time-Kill studies, the efflux pump inhibition assay, ATPase inhibitory activity, mutation prevention concentration and in-silico studies.

Results: The results showed that both glycosides did not possess antibacterial activity of their own, but in combination, they reduced the MIC of tetracycline up to 16 folds. Both were found to inhibit efflux pumps, but niaziridin was the best. In real time expression pattern analysis, niaziridin was also found responsible for the down expression of the two important efflux pump acrB & yojI genes alone as well as in combination. Niaziridin was also able to over express the porin forming genes (ompA & ompX). These glycosides decreased the mutation prevention concentration of tetracycline.

Conclusion: This is the first ever report on glycosides, niazirin and niaziridin acting as drug resistance reversal agent through efflux pump inhibition and modulation of expression pattern drug resistant genes. This study may be helpful in preparing an effective antibacterial combination against the drug-resistant GNB from a widely growing Moringa oleifera.

Keywords: MDR, Glycosides, Niaziridin, Niazirin, Antibacterial combinations, Drug resistance.

Graphical Abstract
[1]
Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem., 2009, 78, 119-146.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[2]
Enterobacteriaceae, C.; Kanj, S.S.; Kanafani, Z.A. Current concepts in antimicrobial therapy against resistant gram-negative organisms: Extended-Spectrum β-Lactamase–Producing enterobacteriaceae, carbapenem-resistant enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin. Proc., 2011, 86(3), 250-259. [DOI: 10.4065/mcp.2010.0674] [PMID: 21364117]
[3]
Vaughan, L.; Wise, K.; Holmes-Maybank, K.; Charity, P. Centers for disease control and prevention. antibiotic resistance threats in the United States, 2013. (Available at: www.cdc.gov/drugresistance/threat-report-2013).
[4]
Garnotel, E.; Nicolas, P.; Davin-re, A.; Chevalier, J.; Page, J. Identification and evolution of drug efflux pump in clinical Enterobacter Aerogenes strains isolated in 1995 and 2003. PLoS One, 2008, 3(9), e3203.
[http://dx.doi.org/10.1371/journal.pone.0003203] [PMID: 18787654]
[5]
Petković, H.; Lukežič, T.; Šušković, J. Biosynthesis of oxytetracycline by Streptomyces rimosus: Past, present and future directions in the development of tetracycline antibiotics. Food Technol. Biotechnol., 2017, 55(1), 3-13.
[http://dx.doi.org/10.17113/ftb.55.01.17.4617] [PMID: 28559729]
[6]
De Kievit, T.R.; Parkins, M.D.; Gillis, R.J.; Srikumar, R.; Ceri, H.; Poole, K.; Iglewski, B.H.; Storey, D.G. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 2001, 45(6), 1761-1770.
[http://dx.doi.org/10.1128/AAC.45.6.1761-1770.2001] [PMID: 11353623]
[7]
Dwivedi, G.R. Sanchita, null; Singh, D.P.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Nano Particles: Emerging warheads against bacterial superbugs. Curr. Top. Med. Chem., 2016, 16, 1963-1975.
[PMID: 26876525]
[8]
Trittler, R.; Kern, W.V.; Bohnert, A.; Schuster, S.; Fa, E. Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia Coli RND-Type MDR Efflux Pump YhiV(MdtF). J. Antimicrob. Chemother., 59(6), 2007, 1216-1222.
[9]
Laupland, K.B.; Ruppé, E.; Harbarth, S. In 2035, will all bacteria be multidrug resistant? We are not sure. Intensive Care Med., 2016, 42(12), 2021-2023.
[http://dx.doi.org/10.1007/s00134-016-4343-2] [PMID: 27091440]
[10]
Stavri, M.; Piddock, L.J.V.; Gibbons, S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother., 59(6), 1247-1260.
[http://dx.doi.org/10.1093/jac/dkl460]
[11]
Livermore, D.M. Introduction: the challenge of multiresistance. Int. J. Antimicrob. Agents, 2007, 29(Suppl. 3), S1-S7.
[http://dx.doi.org/10.1016/S0924-8579(07)00158-6] [PMID: 17659208]
[12]
Dwivedi, G.R.; Singh, D.P. Sanchita; Sharma, A.; Darokar, M.P. Efflux pumps: Warheads of gram-negative bacteria and efflux pump inhibitors. In:New Approaches in Biological Research; Nova Science Publishers: New York, 2017, pp. 35-71.
[13]
Antachopoulos, C.; Iosifidis, E. Colistin use in neonates and children with infections due to carbapenem-resistant Bacteria. Pediatr. Infect. Dis. J., 2017, 36(9), 905-907.
[http://dx.doi.org/10.1097/INF.0000000000001655] [PMID: 28650936]
[14]
Warren, D.K.; Kollef, M.H. Prevention of hospital infection. Microbes Infect., 2005, 7(2), 268-274.
[http://dx.doi.org/10.1016/j.micinf.2004.12.003] [PMID: 15725388]
[15]
Bockstael, K.; Aerschot, A. Antimicrobial resistance in bacteria. Cent. Eur. J. Med., 2009, 4(2), 141-155.
[http://dx.doi.org/10.2478/s11536-008-0088-9]
[16]
Sidjabat, H.E.; Paterson, D.L. Multidrug-resistant Escherichia coli in Asia: Epidemiology and management. Expert Rev. Anti Infect. Ther., 2015, 13(5), 575-591.
[http://dx.doi.org/10.1586/14787210.2015.1028365] [PMID: 25805210]
[17]
Lomovskaya, O.; Bostian, K.A. Practical applications and feasibility of efflux pump inhibitors in the clinic-A vision for applied use. Biochem. Pharmacol., 2006, 71(7), 910-918.
[http://dx.doi.org/10.1016/j.bcp.2005.12.008] [PMID: 16427026]
[18]
Wang, Y.; Venter, H.; Ma, S. Efflux pump inhibitors: A novel approach to combat efflux-mediated drug resistance in bacteria. Curr. Drug Targets, 2016, 17(6), 702-719.
[http://dx.doi.org/10.2174/1389450116666151001103948] [PMID: 26424403]
[19]
Phan, G.; Picard, M.; Broutin, I. Focus on the outer membrane factor OprM, the forgotten player from efflux pumps assemblies. Antibiotics (Basel), 2015, 4(4), 544-566.
[http://dx.doi.org/10.3390/antibiotics4040544] [PMID: 27025640]
[20]
Vaishnav, P.; Demain, A.L. Unexpected applications of secondary metabolites. Biotechnol. Adv., 2011, 29(2), 223-229.
[http://dx.doi.org/10.1016/j.biotechadv.2010.11.006] [PMID: 21130862]
[21]
Wallace, R.J. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc., 2004, 63(4), 621-629.
[http://dx.doi.org/10.1079/PNS2004393] [PMID: 15831135]
[22]
Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv. Nutr., 2011, 2(1), 32-50.
[http://dx.doi.org/10.3945/an.110.000117] [PMID: 22211188]
[23]
Dorman, H.J.D.; Deans, S.G.; Merr, L.; Myrtaceae, P. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
[PMID: 10736000]
[24]
Gibbons, S. Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochem. Rev., 2005, 4(1), 63-78.
[http://dx.doi.org/10.1007/s11101-005-2494-9]
[25]
Gallucci, N.; Casero, C.; Oliva, M.; Zygadlo, J.; Demo, M. Interaction between terpenes and penicillin on bacterial strains resistant to beta - Lactam antibiotics. Mol. Med Chem., 2006, 10, 30-32.
[26]
Lemos, G.; Maia, D.A.; Falcão-silva, V.S.; Gregório, P.; Aquino, V.; Araújo-júnior, J.X. De; Tavares, J.F.; Sobral, M.; Rodrigues, L.C.; Siqueira-júnior, J.P.; De; Barbosa-filho, J.M. Flavonoids from Praxelis Clematidea R.M. King And. Robinson modulate bacterial drug resistance. Molecules, 2011, 16(6), 4828-4835.
[http://dx.doi.org/10.3390/molecules16064828] [PMID: 21666549]
[27]
Dwivedi, G.R.; Gupta, S.; Maurya, A.; Tripathi, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Synergy potential of indole alkaloids and its derivative against drug-resistant Escherichia coli. Chem. Biol. Drug Des., 2015, 86(6), 1471-1481.
[http://dx.doi.org/10.1111/cbdd.12613] [PMID: 26132412]
[28]
Dwivedi, G.R.; Upadhyay, H.C.; Yadav, D.K.; Singh, V.; Srivastava, S.K.; Khan, F.; Darmwal, N.S.; Darokar, M.P. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli. Chem. Biol. Drug Des., 2014, 83(4), 482-492.
[http://dx.doi.org/10.1111/cbdd.12263] [PMID: 24267788]
[29]
Cottarel, G.; Wierzbowski, J. Combination drugs, An Emerging option for antibacterial therapy. 2007, 25(12), 547-55.
[http://dx.doi.org/10.1111/cbdd.12263] [PMID: 24267788]
[30]
Dwivedi, G.; Tyagi, R.; Gupta, S.; Tripathi, S.; Pati, S.; Srivastava, S.; Darokar, M.; Sharma, A. Antibiotics potentiating potential of catharanthine against superbug pseudomonas aeruginosa. J. Biomol. Struct. Dyn., 2017.
[PMID: 29210342]
[31]
Dwivedi, G.R.; Gupta, S.; Roy, S.; Kalani, K.; Pal, A.; Thakur, J.P.; Saikia, D.; Sharma, A.; Darmwal, N.S.; Darokar, M.P.; Srivastava, S.K. Tricyclic sesquiterpenes from Vetiveria zizanoides (L.) Nash as antimycobacterial agents. Chem. Biol. Drug Des., 2013, 82(5), 587-594.
[http://dx.doi.org/10.1111/cbdd.12188] [PMID: 23841574]
[32]
Dwivedi, G.R.; Tiwari, N.; Singh, A.; Kumar, A.; Roy, S.; Negi, A.S.; Pal, A.; Chanda, D.; Sharma, A.; Darokar, M.P. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli. Appl. Microbiol. Biotechnol., 2016, 100(5), 2311-2325.
[http://dx.doi.org/10.1007/s00253-015-7152-6] [PMID: 26658982]
[33]
Luqman, S.; Dwivedi, G.R.; Darokar, M.P.; Kalra, A.; Khanuja, S.P.S. Potential of rosemary oil to be used in drug-resistant infections. Altern. Ther. Health Med., 2007, 13(5), 54-59.
[PMID: 17900043]
[34]
Maurya, A.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem. Biol. Drug Des., 2013, 81(4), 484-490.
[http://dx.doi.org/10.1111/cbdd.12103] [PMID: 23290001]
[35]
Reyes-Chilpa, R.; Baggio, C.H.; Alavez-Solano, D.; Estrada-Muñiz, E.; Kauffman, F.C.; Sanchez, R.I.; Mesia-Vela, S. Inhibition of gastric H+,K+-ATPase activity by flavonoids, coumarins and xanthones isolated from Mexican medicinal plants. J. Ethnopharmacol., 2006, 105(1-2), 167-172.
[http://dx.doi.org/10.1016/j.jep.2005.10.014] [PMID: 16314059]
[36]
Sangwan, P.L.; Koul, J.L.; Koul, S.; Reddy, M.V.; Thota, N.; Khan, I.A.; Kumar, A.; Kalia, N.P.; Qazi, G.N. Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorg. Med. Chem., 2008, 16(22), 9847-9857.
[http://dx.doi.org/10.1016/j.bmc.2008.09.042] [PMID: 18848780]
[37]
Dinda, B.; Das, N.; Dinda, S.; Dinda, M. SilSarma, I. The genus Sida L. - A traditional medicine: Its ethnopharmacological, phytochemical and pharmacological data for commercial exploitation in herbal drugs industry. J. Ethnopharmacol., 2015, 176, 135-176.
[http://dx.doi.org/10.1016/j.jep.2015.10.027] [PMID: 26497766]
[38]
Randhawa, G.K.; Kullar, J.S. Rajkumar, Bioenhancers from mother nature and their applicability in modern medicine. Int. J. Appl. Basic Med. Res., 2011, 1(1), 5-10.
[http://dx.doi.org/10.4103/2229-516X.81972] [PMID: 23776764]
[39]
Pal, A.; Bawankule, U.; Arya, J.S.; Shanker, K.; Mohangupta, M. Influence of moringa oleifera on pharmacokinetic disposition of rifampicin using HPLC-PDA method : A pre-clinical study. Biomed. Chromatogr., 2010, 25(6), 641-645.
[http://dx.doi.org/10.1002/bmc.1494]
[40]
Shanker, K.; Gupta, M.M.; Srivastava, S.K.; Bawankule, D.U.; Pal, A.; Khanuja, S.P.S. Determination of bioactive nitrile glycoside (s) in drumstick (MoringaOleifera) by reverse phase HPLC. Food Chem., 2007, 105(1), 376-382.
[http://dx.doi.org/10.1016/j.foodchem.2006.12.034]
[41]
Khanuja, S.P.S.; Arya, J.S.; Tiruppadiripuliyur, R.S.K.; Saikia, D.; Kaur, H.; Singh, M.; Gupta, S.C.; Shasany, A.K.; Darokar, M.P.; Srivastava, S.K.; Gupta, M.M.; Verma, S.C.; Pal, A. Nitrile glycoside useful as a bioenhancer of drugs and nutrients. Process of its isolation from Moringa Oleifera, US Patent 6858588, February 22,. 2005.
[42]
Lewis, K. In search of natural substrates and inhibitors of MDR pumps. J. Mol. Microbiol. Biotechnol., 2001, 3(2), 247-254.
[PMID: 11321580]
[43]
Mohana, D.C.; Satish, S.; Raveesha, K.A. Antibacterial evaluation of some plant extracts against some human pathogenic bacteria. Adv. Biol. Res., 2008, 2, 49-55.
[44]
Putman, M.; Hendrik, W. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev., 2000, 64, 672-693.
[http://dx.doi.org/10.1128/mmbr.64.4.672-693.2000] [PMID: 11104814]
[45]
Opperman, T.J.; Nguyen, S.T. Recent Advances toward a Molecular Mechanism of Efflux Pump Inhibition., 6, 1-16.2015, [http://dx.doi.org/10.3389/fmicb.2015.00421]
[46]
Gupta, S.; Mishra, M.; Sen, N.; Parihar, R.; Dwivedi, G.R.; Khan, F.; Sharma, A. DbMDR: a relational database for multidrug resistance genes as potential drug targets. Chem. Biol. Drug Des., 2011, 78(4), 734-738.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01188.x] [PMID: 21781283]
[47]
Maurya, A.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K. Preparative isolation of Bioenhancer Loganetin from Sf Alstonia Scholaris by fast centrifugal partition chromatography. Sep. Sci. Technol., 2014, 49, 773-777.
[http://dx.doi.org/10.1080/01496395.2013.862548]
[48]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027] [PMID: 24891085]
[49]
Upadhyay, H.C.; Dwivedi, G.R.; Darokar, M.P.; Chaturvedi, V.; Srivastava, S.K. Bioenhancing and antimycobacterial agents from Ammannia multiflora. Planta Med., 2012, 78(1), 79-81.
[http://dx.doi.org/10.1055/s-0031-1280256] [PMID: 21969115]
[50]
Dwivedi, G.R.; Tyagi, R. Sanchita, null; Tripathi, S.; Pati, S.; Srivastava, S.K.; Darokar, M.P.; Sharma, A. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas Aeruginosa. J. Biomol. Struct. Dyn., 2018, 36(16), 1-15.
[http://dx.doi.org/10.1080/07391102.2017.1413424]
[51]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 2019, 37(5), 1307-1325.
[http://dx.doi.org/10.1080/07391102.2018.1458654] [PMID: 29595093]
[52]
Maurya, A.; Srivastava, S.K. Large-scale separation of clavine alkaloids from Ipomoea muricata by pH-zone-refining centrifugal partition chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(18-19), 1732-1736.
[http://dx.doi.org/10.1016/j.jchromb.2009.04.036] [PMID: 19467935]
[53]
Weinstein, P. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In:Approved Standard, 9th ed; CLSI: PA, United States, 2012, Vol. 32, .
[54]
Eliopoulos, G.M.; Wennersten, C.B. Antimicrobial activity of quinupristin-dalfopristin combined with other antibiotics against vancomycin-resistant Enterococci. Antimicrob. Agents Chemother., 2002, 46(5), 1319-1324.
[http://dx.doi.org/10.1128/AAC.46.5.1319-1324.2002]
[55]
Odds, F.C. Synergy, Antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother., 2003, 52(1), 1.
[http://dx.doi.org/10.1093/jac/dkg301] [PMID: 12805255]
[56]
Eliopoulos, G.M.; Eliopoulos, C.T. Antibiotic combinations: Should they be tested? Clin. Microbiol. Rev., 1988, 1(2), 139-156.
[http://dx.doi.org/10.1128/CMR.1.2.139] [PMID: 3069193]
[57]
Viveiros, M.; Rodrigues, L.; Martins, M.; Couto, I.; Spengler, G.; Martins, A.; Amaral, L. Evaluation of efflux activity of bacteria by a semi-automated fluorometric system. Methods Mol. Biol., 2010, 642, 159-172.
[http://dx.doi.org/10.1007/978-1-60327-279-7_12]
[58]
Suzuki, Y.; Ueno, S.; Ohnuma, R.; Koyama, N. Cloning, sequencing and functional expression in Escherichia coli of the gene for a P-type Na(+)-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum. Biochim. Biophys. Acta, 2005, 1727(3), 162-168.
[http://dx.doi.org/10.1016/j.bbaexp.2004.12.008] [PMID: 15715958]
[59]
Hong, S.; Pedersen, P.L. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. 2008. 72(4), 590-641. [DOI: 10.1128/MMBR.00016-08.]
[60]
Martins, M. Identification of efflux-mediated multi-drug resistance in bacterial clinical isolates by two simple methods. Methods Mol. Biol., 2010, 642, 143-157.
[http://dx.doi.org/10.1007/978-1-60327-279-7_11]
[61]
Grkovic, S.; Brown, M.H.; Skurray, R.A. Transcriptional regulation of multidrug efflux pumps in bacteria. Semin. Cell Dev. Biol., 2001, 12(3), 225-237.
[http://dx.doi.org/10.1006/scdb.2000.0248] [PMID: 11428915]
[62]
Heisig, P.; Tschorny, R. Characterization of fluoroquinolone-resistant mutants of Escherichia Coli selected In vitro. Antimicrob. Agents Chemother., 1994, 38, 1284-1291.
[http://dx.doi.org/10.1128/AAC.38.6.1284]
[63]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Darokar, M.P.; Srivastava, S.K. Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant Escherichia coli. Chem. Biol. Drug Des., 2015, 86(3), 272-283.
[http://dx.doi.org/10.1111/cbdd.12491] [PMID: 25476148]
[64]
Yadav, D.K.; Rai, R.; Kumar, N.; Singh, S.; Misra, S.; Sharma, P.; Shaw, P.; Pérez-Sánchez, H.; Mancera, R.L.; Choi, E.H.; Kim, M-H.; Pratap, R. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage. Sci. Rep., 2016, 6, 38128.
[http://dx.doi.org/10.1038/srep38128] [PMID: 27922047]
[65]
Yadav, D.K.; Kumar, S. Saloni; Singh, H.; Kim, M.H.; Sharma, P.; Misra, S.; Khan, F. Molecular docking, QSAR and ADMET studies of withanolide analogs against breast cancer. Drug Des. Devel. Ther., 2017, 11, 1859-1870.
[http://dx.doi.org/10.2147/DDDT.S130601] [PMID: 28694686]
[66]
Yadav, D.K.; Dhawan, S.; Chauhan, A.; Qidwai, T.; Sharma, P.; Bhakuni, R.S.; Dhawan, O.P.; Khan, F. QSAR and docking based semi-synthesis and in vivo evaluation of artemisinin derivatives for antimalarial activity. Curr. Drug Targets, 2014, 15(8), 753-761.
[http://dx.doi.org/10.2174/1389450115666140630102711] [PMID: 24975562]
[67]
Yadav, D.K.; Kalani, K.; Singh, A.K.; Khan, F.; Srivastava, S.K.; Pant, A.B. Design, synthesis and in vitro evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7. Curr. Med. Chem., 2014, 21(9), 1160-1170.
[http://dx.doi.org/10.2174/09298673113206660330] [PMID: 24180274]
[68]
Yadav, D.K.; Kalani, K.; Khan, F.; Srivastava, S.K. QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549. Med. Chem., 2013, 9(8), 1073-1084.
[http://dx.doi.org/10.2174/1573406411309080009] [PMID: 23675978]
[69]
Miller, A.A.; Miller, P.F.; Lomovskaya, I.O.; Zgurskaya, H.I.; Riboswitches, C.M.; Targets, D.; Lee, E.R.; Discovery, D.; Quinn, R.J.; Janso, J.E.; Biosynthetic, C.; Natural, A.; Jay, P.; Lee, Y.; Khosla, C.; Bacterial, C.; Refractory, P.; Killing, A.; Alex, M.; Chapter, J.O.N.; Sensing, Q.; Disable, I.; Biofilms, B.; Bjarnsholt, T.; Tolker-nielsen, T.; Givskov, M.; Hancock, R.E.W.; Antibodies, C.; Sellman, B.R.; Stover, C.K.; Therapeutic, C. Emerging trends in antibacterial discovery answering the call to arms quantitaive real- epigenetic regulation of molecular virology and control of flaviviruses., Antibacterials Research Unit, Pfizer Worldwide R&D, Groton, CT 06340 USA, 2011, pp. 460.
[70]
Zhang, G-F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M-L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem., 2018, 146, 599-612.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.078] [PMID: 29407984]
[71]
Iovleva, A.; Doi, Y. Carbapenem-Resistant Enterobacteriaceae. Clin. Lab. Med., 2017, 37(2), 303-315.
[http://dx.doi.org/10.1016/j.cll.2017.01.005] [PMID: 28457352]
[72]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[73]
Infectious Diseases Society of America. The 10 x ’20 Initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin. Infect. Dis., 2010, 50(8), 1081-1083.
[http://dx.doi.org/10.1086/652237]
[74]
Bassetti, M.; Righi, E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbecks Arch. Surg., 2015, 400(2), 153-165.
[http://dx.doi.org/10.1007/s00423-015-1280-4]
[75]
Dwivedi, G.R.; Singh, D.P.; Sharma, A. Efflux Pumps : Warheads of gram-negative bacteria and efflux pump inhibitors. In:New approaches in biological research; Nova Science Publishers: New York, 2007, pp. 1-42.
[76]
Mahamoud, A.; Chevalier, J.; Alibert-franco, S.; Kern, W.V.; Page, J. Antibiotic efflux pumps in gram-negative bacteria : The inhibitor response strategy. J. Antimicrob. Chemother., 2007, 59(6), 1223-1229.
[http://dx.doi.org/10.1093/jac/dkl493] [PMID: 17229832]
[77]
Martins, M.; Dastidar, S.G.; Fanning, S.; Kristiansen, J.E.; Molnar, J.; Pagès, J.M.; Schelz, Z.; Spengler, G.; Viveiros, M.; Amaral, L. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities. Int. J. Antimicrob. Agents, 2008, 31(3), 198-208.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.10.025] [PMID: 18180147]
[78]
Werle, M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm. Res., 2008, 25(3), 500-511.
[79]
Pagès, J.; Amaral, L. Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of Gram-negative bacteria. Biochim. Biophys. Acta, 2009, 1794(5), 826-833.
[http://dx.doi.org/10.1016/j.bbapap.2008.12.011] [PMID: 19150515]
[80]
Poulikakos, P.; Tansarli, G.S.; Falagas, M.E. Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: A systematic review. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(10), 1675-1685.
[http://dx.doi.org/10.1007/s10096-014-2124-9] [PMID: 24832022]
[81]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027]
[82]
Dwivedi, G.R.; Maurya, A. Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug- resistant Escherichia Coli. Chem. Biol. Drug Des., 2015, 86(3), 272-283.
[http://dx.doi.org/10.1111/cbdd.12491] [PMID: 25476148]
[83]
Blaustein, M.P. The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na+ pump endocrine system. Am. J. Physiol. Cell Physiol., 2018, 314(1), C3-C26.
[http://dx.doi.org/10.1152/ajpcell.00196.2017] [PMID: 28971835]
[84]
Botelho, A.F.M.; Pierezan, F.; Soto-Blanco, B.; Melo, M.M. A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon, 2019, 158, 63-68.
[http://dx.doi.org/10.1016/j.toxicon.2018.11.429] [PMID: 30529380]
[85]
Cos, P.; Vlietinck, A.J.; Vanden, D.; Maes, L. Anti-infective potential of natural products : How to develop a stronger in vitro ‘ Proof-of-Concept. J. Ethnopharmacol., 2006, 106, 290-302.
[http://dx.doi.org/10.1016/j.jep.2006.04.003] [PMID: 16698208]
[86]
Khan, I.A.; Mirza, Z.M.; Kumar, A.; Verma, V.; Qazi, G.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus Aureus. Antimicrob. Agents Chemother., 2006, 50, 810-812.
[http://dx.doi.org/10.1128/AAC.50.2.810-812.2006]
[87]
Skariyachan, S.; Pachiappan, A.; Joy, J.; Bhaduri, R.; Aier, I.; Vasist, K.S. Investigating the therapeutic potential of herbal leads against drug resistant listeria monocytogenes by computational virtual screening and in vitro Assays. J. Biomol. Struct. Dyn., 2015, 33(12), 2682-2694.
[http://dx.doi.org/10.1080/07391102.2015.1004110] [PMID: 25562366]
[88]
Dwivedi, G.R.; Tiwari, N.; Singh, A.; Kumar, A.; Roy, S.; Negi, A.S.; Pal, A.; Chanda, D.; Sharma, A.; Mahendra, P. Gallic acid based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli. Appl. Microbiol. Biotechnol., 2016, 100(5), 2311-2325.
[http://dx.doi.org/10.1007/s00253-015-7152-6] [PMID: 26658982]
[89]
Photoinactivation, A.; Tegos, G.P.; Masago, K.; Aziz, F.; Higginbotham, A.; Stermitz, F.R.; Hamblin, M.R. Inhibitors of bacterial multidrug efflux pumps potentiate. Antimicrob. Agents Chemother., 2008, 52, 3202-3209.
[http://dx.doi.org/10.1128/AAC.00006-08] [PMID: 18474586]
[90]
Sharma, S.; Kumar, M.; Sharma, S.; Nargotra, A.; Koul, S.; Khan, I.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium Tuberculosis. J. Antimicrob. Chemother., 2010, 65(8), 1694-1701.
[http://dx.doi.org/10.1093/jac/dkq186]
[91]
Jayaraman, P.; Sakharkar, M.K.; Lim, C.S.; Tang, T.H.; Kishore, R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas Aeruginosa in vitro. Int. J. Biol. Sci., 2010, 6(6), 556-568.
[http://dx.doi.org/10.7150/ijbs.6.556]
[92]
Lomovskaya, O.; Warren, M.S.; Lee, A.; Galazzo, J.; Fronko, R.; Lee, M.; Blais, J.; Cho, D.; Chamberland, S.; Renau, T.; Leger, R.; Hecker, S.; Watkins, W.; Hoshino, K.; Ishida, H.; Lee, V.J. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother., 2001, 45(1), 105-116.
[http://dx.doi.org/10.1128/AAC.45.1.105-116.2001] [PMID: 11120952]
[93]
Nikaido, H. molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 2003, 67(4), 593-656.
[http://dx.doi.org/10.1128/mmbr.67.4.593-656.2003] [PMID: 14665678]
[94]
Thanassi, D.G.; Suh, G.S.B.; Nikaido, H. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia Coli. J. Bacteriol., 1995, 177, 998-1007.
[PMID: 7860612]
[95]
Poole, K. Efflux-Mediated Antimicrobial Resistance. J. Antimicrob. Chemother., 2005, 56(1), 20-51.
[http://dx.doi.org/10.1093/jac/dki171]
[96]
Dwivedi, G.R.; Singh, D.P.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Nano Particles: Emerging warheads against bacterial superbugs. 2016, 16(18), 1963 -1975. [PMID: 26876525]
[97]
Kern, W.V. Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF Associated with insertion element transposition in Escherichia Coli Mutants selected with a Fluoroquinolone. Antimicrob. Agents Chemother., 2001, 45, 1467-1472.
[http://dx.doi.org/10.1128/AAC.45.5.1467-1472.2001] [PMID: 11302812]
[98]
Pradel, E.; Masi, M.; Pages, J. Overexpression and purification of the three components of the Enterobacter aerogenes AcrA-AcrB-TolC multidrug efflux pump. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 786, 197-205.
[PMID: 12651015]
[99]
Randall, L.P.; Woodward, M.J. The multiple antibiotic resistance (mar) locus and its significance. Res. Vet. Sci., 2002, 72(2), 87-93.
[http://dx.doi.org/10.1053/rvsc.2001.0537] [PMID: 12027588]
[100]
Smith, H.J.; Nichol, K.A.; Hoban, D.J.; Zhanel, G.G. Stretching the mutant prevention concentration (MPC) beyond its limits. J. Antimicrob. Chemother., 2003, 51(6), 1323-1325.
[http://dx.doi.org/10.1093/jac/dkg255] [PMID: 12716780]
[101]
Robinson, J.A. Folded synthetic peptides and other molecules targeting outer membrane protein complexes in gram-negative bacteria. Front Chem., 2019, 7, 45.
[http://dx.doi.org/10.3389/fchem.2019.00045] [PMID: 30788339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy