Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Marine Originated Fused Heterocyclic: Prospective Bioactivity against Cancer

Author(s): Deepika Paliwal, Saurabh Srivastava*, Pramod Kumar Sharma and Irfan Ahmad

Volume 7, Issue 1, 2021

Published on: 28 March, 2019

Page: [93 - 106] Pages: 14

DOI: 10.2174/2215083805666190328205729

Price: $65

Abstract

The deep Sea has several herbal sources such as marine organisms. These marine sources possibly have effective anticancer properties. The fused heterocyclic ring with marine source has special characteristics with minimum toxicity and with maximum anticancer effects. The review focused on and classified the prospective lead compounds which have shown a promising therapeutic range as anticancer agents in clinical and preclinical trials.

Keywords: Marine, herbal, anticancer activity, heterocyclic, cancer, fused-ring.

Graphical Abstract
[1]
Aktipis CA, Boddy AM, Jansen G, et al. Cancer across the tree of life: Cooperation and cheating in multicellularity. Philosophical transactions of the Royal Society of London Series B. Biol Sci 2015; 37: 1-21.
[2]
Bishayee A, Block K. A broad-spectrum integrative design for cancer prevention and therapy: The challenge ahead. Sem Cancer Biol 2015; 35: 276-304.
[3]
Herbel C, Patsoukis N, Bardhan K, Seth P, Weaver JD, Boussiotis VA. Clinical significance of T cell metabolic reprogramming in cancer. Clin Translat Med 2016; 5: 1-23.
[4]
Cesari IM, Carvalho E, Figueiredo Rodrigues M, Mendonca Bdos S, Amoedo ND, Rumjanek FD. Methyl jasmonate: Putative mechanisms of action on cancer cells cycle, metabolism, and apoptosis. Int J Cell Biol 2014; 572097: 1-26.
[5]
Deborde S, Omelchenko T, Lyubchik A, et al. Schwann cells induce cancer cell dispersion and invasion J clinical investigation 2016; 126: 1538-54.
[6]
Siegel RL, Miller KD, Jemal A. Cancer statistics 2017. CA: A Cancer J Clin 2017; 67: 7-30.
[7]
Senthebane DA, Rowe A, Thomford NE, et al. The role of tumor microenvironment in chemoresistance: To survive, keep your enemies closer. Intl J Mol Sci 2017; 18: 1-30.
[8]
Vidal E, Sayols S, Moran S, et al. A DNA methylation map of human cancer at single base-pair resolution. Oncogene 2017; 36: 5648-57.
[9]
Sukocheva OA. Expansion of sphingosine kinase and sphingosine-1-phosphate receptor function in normal and cancer cells: From membrane restructuring to mediation of estrogen signaling and stem cell programming. Int J Mol Sci 2018; 19: 1-31.
[10]
Xu Y, Fang F, Miriyala S, et al. KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells. Cancer Res 2013; 73: 4406-17.
[11]
McNerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: When genetics and environment collide. Nat Rev Cancer 2017; 17: 513-27.
[12]
Land SR, Toll BA, Moinpour CM, et al. Research priorities, measures, and recommendations for assessment of tobacco use in clinical cancer research. Clin Cancer Res: An Off J Am Associat. Cancer Res 2016; 22: 1907-13.
[13]
Srikanth S, Chen Z. Plant protease inhibitors in therapeutics-focus on cancer therapy Front Pharma 201 470: 1-19.
[14]
Kharb M, Jat RK, Gupta R. A review on medicinal plants used as a source of anticancer agents. Int J Drug Res Technol 2012; 2: 177-83.
[15]
Williams DH, Stone MJ, Hauck PR, Rahman SK. Why are secondary metabolites (natural products) biosynthesized. J Nat Prod 1989; 52: 1189-208.
[16]
K. Kathiresan. Duraisamy.Current issue of microbiology. ENVIS Centre Newslett 2005; 4: 3-5.
[17]
Cragg GM, Newman DJ, Weiss RB. Coral reefs, forests, and thermal vents: The worldwide exploration of nature for novel antitumor agents. Semin Oncol 1997; 24: 156-63.
[18]
Pomponi AS. The bioprocess-technological potential of the sea. J Biotechnol 1999; 70: 5-13.
[19]
Schweitzer J, Handley FG, Edwards J, et al. Summary of the workshop on drug development, biologic diversity, and economic growth. J Natl Cancer Inst 1991; 83: 1294-8.
[20]
Rinehart KL. Antitumor compounds from tunicates. Med Res Rev 2000; 20: 1-27.
[21]
Schumacher M, Kelkel M, Dicato M, Diederich M. A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2010 Molecules 2011; 30; 16(7): 5629-46.
[22]
Wang F, Ezell SJ, Zhang Y, et al. FBA-TPQ, a novel marine-derived compound as experimental therapy for prostate cancer. Invest New Drugs 2010; 28: 234-41.
[23]
Mioso R, Marante FJ, Bezerra RS, Borges FV, Santos BV, Laguna IH. Cytotoxic compounds derived from marine sponges. A review (2010-2012). Molecules 2017; 28: 22-2.
[24]
Bouzard D, dicesare P, Essiz M, et al. Fluoronaphthyridines as antibacterial agents synthesis and structure-activity-relationships of 5-substituted-6-fluoro-7-(cycloalkylamino)-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids. J Med Chem 1992; 35: 518.
[25]
Srivastava SK, Jaggi M, Singh AT, et al. Anticancer and anti-inflammatory activities of 1,8-naphthyridine-3-carboxamide derivatives. Bioorg Med Chem Lett 2007; 17(23): 6660-4.
[26]
You QD, Li ZY, Huang CH, et al. Discovery of a novel series of quinolone and naphthyridine derivatives as potential topoisomerase i inhibitors by scaffold modification. J Med Chem 2009; 52(18): 5649-61.
[27]
Nakamura H, Kobayashi J, Ohizumi Y, Hirata YJ. Aaptamines. Novel benzo[de][1,6]naphthyridines from the okinawan marine sponge aaptos aaptos. Chem Soc Perkin Trans 1987; 1: 173-6.
[28]
Larghi EL, Bohn ML, Kaufman TS. Aaptamine and related products. Their isolation, chemical syntheses, and biological activity. Tetrahedron 2009; 65: 4257-82.
[29]
Bowling JJ, Pennaka HK, Ivey K, et al. Antiviral and anticancer optimization studies of the DNA-binding marine natural product aaptamine. Chem Biol Drug Design 2008; 71: 205-15.
[30]
Aoki S, Kong D, Suna H, et al. Aaptamine, a spongean alkaloid, activates p21 promoter in a p53-independent manner. Biochem Biophys Res Comm 2006; 342: 101-6.
[31]
Jin MH, Zhao WN, Zhang YW, et al. Antiproliferative effect of aaptamine on human chronic myeloid leukemia K562 cells. Intl J Mol Sci 2011; 12: 7352-9.
[32]
Dyshlovoy SA, Naeth I, Venz S, et al. Proteomic profiling of germ cell cancer cells treated with aaptamine, a marine alkaloid with antiproliferative activity. J Proteome Res 2012; 11: 2316-30.
[33]
Dyshlovoy SA, Venz S, Shubina LK, et al. Activity of aaptamine and two derivatives, demethyloxyaaptamine and isoaaptamine, in cisplatin-resistant germ cell cancer. J Proteom 2014; 96: 223-39.
[34]
Dyshlovoy SA, Fedorov SN, Shubina LK, et al. Aaptamines from the marine sponge Aaptos sp. Display anticancer activities in human cancer cell lines and modulate AP-1-, NF-kappaB-, and p53-dependent transcriptional activity in mouse JB6 Cl41 cells. Bio Med Res Int 2014; 469309: 1-8.
[35]
Wu CF, Lee MG, El-Shazly M, et al. Isoaaptamine Induces T-47D Cells Apoptosis and Autophagy via Oxidative Stress. Marine Drugs 2018; 16: 1-18.
[36]
Sharma V, Sharma PC, Kumar V. A mini review on pyridoacridines: Prospective lead compounds in medicinal chemistry. J Adv Res 2015; 6: 63-71.
[37]
Kathryn MM, Louis RB. Biological activities of pyridoacridines. Nat Prod Rep 2004; 21: 731-51.
[38]
Kijjoa A, Wattanadilok R, Campos N, Nascimento MS. Anticancer activity evaluation of kuanoniamines A and C isolated from the marine sponge Oceanapia sagittaria, collected from the Gulf of Thailand. Mar Drugs 2007; 5: 6-22.
[39]
McDonald LA, Eldredge GS, Barrows LR, Ireland CM. Inhibition of topoisomerase II catalytic activity by pyridoacridine alkaloids from a Cystodytes sp. ascidian: A mechanism for the apparent intercalator-induced inhibition of topoisomerase II. J Med Chem 1994; 37: 3819-27.
[40]
Caiping LT, Sensen W, Shouhai H, et al. Anlong Nuclear permeable ruthenium(II) β-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. J Med Chem 2010; 53: 7613-24.
[41]
Ishida HK, Wang MO, Cosentino ML, Hu CQ, Lee KH. Anti-AIDS agents. 46. Anti-HIV activity of harman, an anti-HIV principle from Symplocos setchuensis, and its derivatives. J Nat Prod 2001; 64: 958-62.
[42]
Xiao SL, Lin W, Wang C, Yang M. Synthesis and biological evaluation of DNA targeting flexible side-chain substituted betacarboline derivatives. Bioorg Med Chem Lett 2001; 11: 437-41.
[43]
Funayama Y, Nishio K, Wakabayashi K, et al. Effects of β and γ-carboline derivatives on DNA topoisomerase activities. Mutat Res Fundam Mol Mech Mutagen 1996; 349: 183-91.
[44]
Li Y, Liang FS, Jiang W, et al. β-Carboline anti-cancer drug, inhibits the CDK activity of budding yeast. Cancer Biol Ther 2007; 6: 1193-9.
[45]
Castro AC, Dang LC, Soucy F, et al. Novel IKK inhibitors: β-carbolines. Bioorg Med Chem Lett 2003; 13: 2419-22.
[46]
Plassmann NS, Sarli V, Gartner M, et al. Giannis Synthesis and biological evaluation of new tetrahydro-beta-carbolines as inhibitors of the mitotic kinesin Eg5. Bioorg Med Chem 2005; 13: 6094-111.
[47]
Sakai E, Kato H, Rotinsulu H, Losung F. New β-carboline alkaloids from the marine sponge Luffariella variabilis. J Nat Med 2014; 68: 215-9.
[48]
Danneberg P, Weber KH. Chemical structure and biological activity of the diazepines. Brit J Clin Pharmacol 1993; 16(2): 231-44.
[49]
Mahadik PS, Senthilkumar GP, Powar AS, et al. chemical and biological properties of benzodiazepines- An overview. Res J Pharm Tech 2012; 5(2): 181-9.
[50]
Gill RK, Kaushik SO, Chugh J, Bansal S. Recent development in [1,4]Benzodiazepines as potent anticancer agents: A review. Mini-Rev Med Chem 2013; 14(3): 1-15.
[51]
Igarashi Y. Revision of the structure assigned to the antibiotic BU-4664L from Micromonopora. J Antibiot 2005; 58: 350-2.
[52]
Charan RD. Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 2004; 67: 1431-3.
[53]
Ohkuma H, Kobaru S. Bristol-Myers Squibb Company Compound produced by a strain of Micromonospora US5541181A
[54]
McAlpine JB. Biosynthesis of diazepinomicin/ECO-4601, a Micromonospora secondary metabolite with a novel ring system. J Nat Prod 2008; 71: 1585-90.
[55]
Miyanaga S. Anti-invasive and anti-angiogenic activities of naturally occurring dibenzodiazepine BU-4664L and its derivatives. Bioorg Med Chem Lett 2010; 20: 963-5.
[56]
Boufaied N. TLN-4601, a novel anticancer agent, inhibits RAS signaling post RAS prenylation and before MEK activation. Anticancer Drugs 2010; 21: 543-52.
[57]
Hu YQ, Gao C, Zhang S, et al. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 2017; 139: 22-47.
[58]
Fan YL, Wu JB, Cheng XW, Zhang FZ. Fluoroquinolone derivatives and their anti-tubercular activities. Eur J Med Chem 2018; 146: 554-63.
[59]
Yang X, Yang S, Chai H, Yang Z. A novel isoquinoline derivative anticancer agent and its targeted delivery to tumor cells using transferrin-conjugated liposomes. PLoS One 2015; 10(8): 1-5.
[60]
Chennamaneni NK, Arif J, Buckner FS, Gelb MH. Isoquinoline-based analogs of the cancer drug clinical candidate tipifarnib as anti-Trypanosoma cruzi agents. Bioorg Med Chem Lett 2009; 19(23): 6582-4.
[61]
Frincke JM, Faulkner DJ. Antimicrobial metabolites of the sponge Reniera sp. J Am Chem Soc 1981; 104: 265-9.
[62]
Davidson BS, Renieramycin G. A new alkaloid from the sponge Xestospongia caycedoi. Tetrahedron Lett 1992; 33: 3721-4.
[63]
Suwanborirux K, Amnuoypol S, Plubrukarn A, Pummangura S. Chemistry of renieramycins. Part 3. Isolation and structure of stabilized renieramycin type derivatives possessing antitumor activity from Thai sponge Xestospongia species, pretreated with potassium cyanide. J Nat Prod 2003; 66: 1441-6.
[64]
Pettit GR, Knight JC, Collins JC, et al. Antineoplastic agents 430. Isolation and structure of cribrostatins 3, 4, and 5 from the republic of maldives cribrochalina species. J Nat Prod 2000; 63: 793-8.
[65]
Oku N, Matsunaga S, Van SRW, et al. A highly Cytotoxic tetrahydroisoquinoline alkaloid, from a marine sponge Neopetrosia sp. J Nat Prod 2003; 66: 1136-9.
[66]
Saito N, Tanaka C, Koizumi Y, et al. Chemistry of renieramycins. Part 6: Transformation of renieramycin M into jorumycin and renieramycin J including oxidative degradation products, mimosamycin, renierone, and renierol acetate. Tetrahedron 2004; 60: 3873-81.
[67]
Amnuoypol S, Suwanborirux K, Pummangura S, et al. Chemistry of renieramycins. Part 5. Structure elucidation of renieramycin-type derivatives O, Q, R, and S from Thai marine sponge Xestospongia species pretreated with potassium cyanide. J Nat Prod 2004; 67: 1023-8.
[68]
Charupant K, Suwanborirux K, Amnuoypol S, et al. Jorunnamycins A-C, new stabilized renieramycintype bistetrahydroisoquinolines isolated from the Thai nudibranch Jorunna funebris. Chem Pharm Bull 2007; 55: 81-6.
[69]
Charupant K, Daikuhara N, Saito E, et al. Chemistry of renieramycins. Part 8: Synthesis and cytotoxicity evaluation of renieramycin M-jorunnamycin A analogues. Bioorg Med Chem 2009; 17: 4548-58.
[70]
Rinehart KL, Holt TG, Fregeau NL, et al. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: Potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J Org Chem 1990; 55: 4512-5.
[71]
Wright AE, Forleo DA, Gunawardana GP, et al. Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J Org Chem 1990; 55: 4508-12.
[72]
Cuevas C, Perez M, Martin MJ, et al. Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett 2000; 2: 2545-8.
[73]
Cuevas C, Francesch A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep 2009; 26: 322-37.
[74]
Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 2004; 67: 1216-38.
[75]
Kanzaki A, Takebayashi Y, Ren XQ, et al. Overcoming multidrug drug resistance in P-glycoprotein/MDR1-overexpressing cell lines by ecteinascidin 743. Mol Cancer Ther 2002; 1: 1327-34.
[76]
Amador ML, Jimeno J, Paz-Ares L, et al. Progress in the development and acquisition of anticancer agents from marine sources. Ann Oncol 2003; 14: 1607-15.
[77]
Halim H, Chunhacha P, Suwanborirux K, Chanvorachote P. Anticancer and antimetastatic activities of renieramycin M, a marine tetrahydroisoquinoline alkaloid, in human non-small cell lung cancer cells. Anticancer Res 2011; 31: 193-201.
[78]
Lane JW, Estevez A, Mortara K, Callan O, et al. Antitumor activity of tetrahydroisoquinoline analogues 3-epi-jorumycin and 3-epi-renieramycin G. Bioorg Med Chem Lett 2006; 16: 3180-3.
[79]
Scott JD, Williams RM. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem Rev 2002; 102: 1669-730.
[80]
Charupant K, Suwanborirux K, Amnuoypol S, Saito E, Kubo A, Saito N. Jorunnamycins A-C, New Stabilized renieramycin-type bistetrahydroisoquinolines isolated from the thai nudibranch Jorunna funebris. Chem Pharm Bull 2007; 55: 81-6.
[81]
Charupant K, Suwanborirux K, Daikuhara N, et al. Microarray-based transcriptional profiling of renieramycin M and jorunnamycin C, isolated from Thai marine organisms. Marine Drugs 2009; 7(4): 483-94.
[82]
Fontana A, Cavaliere P, Wahidulla S, et al. A new antitumor isoquinoline alkaloid from the marine nudibranch Jorunna funebris. Tetrahedron 2000; 56: 7305-8.
[83]
C. Pathirana, R.J. Andersen. Imbricatine, an unusual benzyltetrahydroisoquinoline alkaloid isolated from the starfish Dermasterias imbricata. J Am Chem Soc 1986; 108: 8288.
[84]
Zhang MZ, Chen Q, Yang GF. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem 2015; 89: 421-41.
[85]
Emiliya VN, Galina NL, Valery NC, Oleg NC. Fluorine-containing indoles: Synthesis and biological activity. J Fluorine Chem 2018; 212: 51-106.
[86]
Sakineh D, Emami S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Europ J Med Chem 2018; 150: 9-29.
[87]
Sidhu JS, Singla R. Mayank, Jaitak V. Indole derivatives as anticancer agents for breast cancer therapy: A review. Anti-Cancer Agents Med Chem 2016; 16: 160-73.
[88]
Stevenson CS, Capper EA, Roshak AK, et al. Scytonemin - a marine natural product inhibitor of kinases key in hyperproliferative infl ammatory diseases. Infl Am Res 2002; 51: 112-4.
[89]
Stevenson CS, Capper EA, Roshak AK. The identifi cation and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J Pharmacol Exp Ther 2002; 303: 858-66.
[90]
Gupta S, Maurya P, Upadhyay A, et al. Synthesis and bio-evaluation of indole-chalcone based benzopyran as promising antiligase and antiproliferative agents. Europ J Med Chem 2018; 143: 1981-96.
[91]
Singh G, Singh G, Rajbir Bhatti, et al. Rationally designed benzopyran fused isoxazolidines and derived β2,3,3-amino alcohols as potent analgesics: Synthesis, biological evaluation and molecular docking analysis. Europ J Med Chem 2017; 127: 210-22.
[92]
Singh S, Ahmad A, Raghuvanshi DS, et al. Synthesis of 3,5-dihydroxy-7,8-dimethoxy-2-(4-methoxyphenyl) benzopyran-4-one derivatives as anticancer agents. Bioorg Med Chem Lett 2016; 26: 5322-7.
[93]
Magda MF, Heba SI, Mohammad MMH. Synthesis and docking studies of novel benzopyran-2-ones with anticancer activity. Europ J Med Chem 2010; 45: 3950-9.
[94]
Pettit GR, Xu JP, Chapuis JC, et al. Antineoplastic agents. 520. Isolation and structure of irciniastatins A and B from the Indo-Pacific marine sponge Ircinia ramosa. J Med Chem 2004; 47: 1149-52.
[95]
Meragelman TL, Willis RH, Woldemichael GM, et al. Candidaspongiolides, distinctive analogues of tedanolide from sponges of the genus Candidaspongia. J Nat Prod 2007; 70: 1133-8.
[96]
Bielitza M, Pietruszka J. The psymberin story-biological properties and approaches towards total and analogue syntheses. Angew Chem Int Ed 2013; 52: 10960-85.
[97]
Jiang X, García-Fortanet J, De BJK. Synthesis and complete stereochemical assignment of psymberin/irciniastatin A. J Am Chem Soc 2005; 1271-55.
[98]
Watanabe T. Syntheses and biological evaluation of irciniastatin A and the C1-C2 alkyne analogue. Org Lett 2010; 12: 1040-3.
[99]
Shangguan N, Kiren S, Williams L. Modeling a macrocyclic Bis[Spirodiepoxide] strategy to erythronolide A. J. Org Lett 2007; 9: 1093.
[100]
Huang X, Shao N, Huryk R, Palani A. The discovery of potent antitumor agent C11-deoxypsymberin/irciniastatin A: Total synthesis and biology of advanced psymberin analogs C. Org Lett 2009; 11: 867.
[101]
Shao N, Huang X, Palani A, et al. New applications of PhI(OAc)2 in synthesis: Total synthesis and SAR development of potent antitumor natural product Psymberin/Irciniastatin A. Synthesis 2009; 17: 2855-72.
[102]
Cichewicz RH, Valeriote FA, Crews P. Psymberin, a potent sponge-derived cytotoxin from Psammocinia distantly related to the pederin family. Org Lett 2004; 6: 1951-4.
[103]
Chinen T, Nagumo Y, Watanabe T, et al. Irciniastatin A induces JNK activation that is involved in caspase-8-dependent apoptosis via the mitochondrial pathway. Toxicol Lett 2010; 199: 341-6.
[104]
Huang X, Shao N, Palani A, et al. The total synthesis of psymberin. Org Lett 2007; 9: 2597-600.
[105]
Shamsuzzaman HK. Bioactive Benzofuran derivatives: A review. Europ J Med Chem 2015; 97: 483-504.
[106]
Radadiya A, Shah A. Bioactive benzofuran derivatives: An insight on lead developments, radioligands and advances of the last decade. Europ J Med Chem 2015; 97: 356-76.
[107]
Kazlauskas R, Murphy PT, Wells RJ. A new series of diterpenes from Australian Spongia species. Aust J Chem 1979; 32: 867-80.
[108]
Takahashi H, Schumann R, Quinn R, et al. Isomers of a marine diterpene distinguish sublines of human melanoma cells on the basis of apoptosis, cell cycle arrest and differentiation markers. Melanoma Res 1992; 1: 359-66.
[109]
Guzmán E, Maher M, Temkin A, et al. Spongiatriol inhibits nuclear factor kappa B activation and induces apoptosis in pancreatic cancer cells. Mar Drugs 2013; 11: 1140-51.
[110]
Kazlauskas R. Heteronemin, a new scalarin type sesterterpene from the sponge Heteronema erecta. Tetrahedron Lett 1996; 17: 2631-4.
[111]
Kopf S. In vitro characterization of the anti-intravasative properties of the marine product heteronemin. Arch Tox 2013; 87: 1851-61.
[112]
Brendel J, Lang HJ, Gerlach U. Sulfonamidesubstituted fused 7-membered ring compounds, their use as a medicament, and pharmaceutical preparations comprising them US Patent US6333349 B12001.
[113]
Engler M, Anke T, Sterner OJ, Brandt UJJ. Pterulinic Acid and pterulone, two novel inhibitors of NADH: Ubiquinone oxidoreductase (Complex I) produced by a Pterula species. J Antibiot 1997; 50: 330.
[114]
Webster RAB, Cassidy F. Benzoxepine and related compounds Patent WO1989011477 1989.
[115]
Foudah AI. Optimization of marine triterpene sipholenols as inhibitors of breast cancer migration and invasion. ChemMedChem 2013; 8: 497-510.
[116]
Foudah AI. Discovery and computer-aided drug design studies of the anticancer marine triterpene sipholanes as novel P-gp and Brk modulators. In Handbook of Anticancer Drugs from Marine Origin (Kim, S, ed),. 2015; Springer pp. 547-569.
[117]
Foudah AI. Optimization, pharmacophore modeling and 3D-QSAR studies of sipholanes as breast cancer migration and proliferation inhibitors. Eur J Med Chem 2014; 73: 310-24.
[118]
Akl MR. The marine-derived sipholenol A-4-O-3′,4′-dichlorobenzoate inhibits breast cancer growth and motility in vitro and in vivo through the suppression of Brk and FAK signaling. Mar Drugs 2014; 12: 2282-304.
[119]
Zhouling Xie, Lulu Zhao, Xue Ding, et al. Design, synthesis and evaluation of 1,4-benzodioxine derivatives as novel platelet aggregation inhibitors. Future Med Chem 2018; 10(4): 367-78.
[120]
Ilić M, Dunkel P, Ilaš J, et al. Towards dual antithrombotic compounds - Balancing thrombin inhibitory and fibrinogen GPIIb/IIIa binding inhibitory activities of 2,3-dihydro-1,4-benzodioxine derivatives through regio- and stereoisomerism. Europ J Med Chem 2013; 62: 329-40.
[121]
Ilic M, Ilaš J, Dunkel P, et al. Novel 1,4-benzoxazine and 1,4-benzodioxine inhibitors of angiogenesis. Europ J Med Chem 2012; 58: 160-70.
[122]
Stonik VA, Fedorov SN. Marine low molecular weight natural products as potential cancer preventive compounds. Mar Drugs 2014; 12: 636-71.
[123]
Sawadogo WR. A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2011. Molecules 2013; 18: 3641-73.
[124]
Park SJ, Jeon YJ. Dieckol from Ecklonia cava suppresses the migration and invasion of HT1080 cells by inhibiting the focal adhesion kinase pathway downstream of Rac1-ROS signaling. Mol Cells 2012; 33: 141-9.
[125]
Ahn JH, Yang YI, Lee KT, Choi JH. Dieckol, isolated from the edible brown algae Ecklonia cava, induces apoptosis of ovarian cancer cells and inhibits tumor xenograft growth. J Cancer Res Clin Oncol 2015; 141: 255.
[126]
Radisky DC, Radisky ES, Barrows LR, et al. Analogs of the marine alkaloid makaluvamines: Synthesis, topoisomerase II inhibition and anticancer activity. Am Chem Soc 1993; 115: 1632.
[127]
Carney JR, Scheuer PJ, Kelly-Borges M. New synthetic approach to pyrroloiminoquinone marine alkaloids. Total synthesis of makaluvamines A, D, I, and K. Tetrahedron 1993; 49: 8483.
[128]
Schmidt E, Harper MK, Faulkner DJJ. Makaluvamines H-M and damirone C from the pohnpeian sponge Zyzzya fuliginosa. Nat Prod 1995; 58: 1861.
[129]
Hu JF, Schetz JA, Kelly M, et al. J. Manadomanzamines A and B: A novel alkaloid ring system with potent activity against mycobacteria and HIV-1. Nat Prod 2002; 65: 476.
[130]
Whibley CE, Keyzers RA, Soper AG, et al. Antiesophageal cancer activity from Southern African marine organisms. Ann N Y Acad Sci 2005; 1056: 405-12.
[131]
Casapullo A, Cutignano A, Bruno I, et al. J. Makaluvamine P, a New cytotoxic pyrroloiminoquinone from Zyzzya cf. Fuliginosa. Nat Prod 2001; 64: 1354.
[132]
Venables DA, Concepcion GP, Matsumota SS, et al. Novel pyrroloquinoline ribosides from the South African latrunculid sponge Strongylodesma aliwaliensis. J Nat Prod 1997; 60: 408.
[133]
Whibley CE, Keyzers RA, Soper AG, et al. Antiesophageal cancer activity from Southern African marine organisms. Ann N Y Acad Sci 2005; 1056: 405-12.
[134]
Yamaguchi M, Miyazaki M, Kodrasov MP, et al. Spongiacidin C, a pyrrole alkaloid from the marine sponge Stylissa massa, functions as a USP7 inhibitor. Bioorg Med Chem Lett 2013; 23: 3884-6.
[135]
Newman DJ, Cragg GM. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem 2004; 11: 1693-713.
[136]
Le Cesne A, Blay JY, Judson I, et al. Phase II study of ET-743 in advanced soft tissue sarcomas: A European Organisation for the Research and Treatment of Cancer (EORTC) soft tissue and bone sarcoma group trial. J Clin Oncol 2005; 23: 576-84.
[137]
Garcia-Carbonero R, Supko JG, Maki RG, et al. Ecteinascidin-743 (ET-743) for chemotherapy-naive patients with advanced soft tissue sarcomas: Multicenter phase II and pharmacokinetic study. J Clin Oncol 2005; 23: 5484-92.
[138]
Demetri GD, Chawla SP, Von Mehren M, et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: Results of a randomized phase II study of two different schedules. J Clin Oncol 2009; 27: 4188-96.
[139]
Mitsuhashi M, Wanibuchi H, Wei M, et al. No inhibition of urinary bladder carcinogenesis in rats with intravesical instillation of alpha-galactosylceramide. Asian Pac J Cancer Prev 2003; 4(1): 45-50.
[140]
Vera MD, Joullie MM. Natural products as probes of cell biology: 20 years of didemnin research. Med Res Rev 2002; 22: 102-45.
[141]
Sun J, Wei Q, Zhou Y, et al. A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol 2017; 11(Suppl. 5): 87.
[142]
Jones AM, Grkovic T, Sykes ML, Avery VM. Trypanocidal activity of marine natural products. Mar Drugs 2013; 11(10): 4058-82.
[143]
Gordon EM, Sankhala KK, Chawla N, Chawla SP. Trabectedin for soft tissue sarcoma: Current status and future perspectives. Adv Ther 2016; 33: 1055-71.
[144]
Swami U, Chaudhary I, Ghalib GM. Eribulin—A review of preclinical and clinical studies. Crit Rev Oncol Hematol 2012; 81(2): 163-84.
[145]
Kasamon YL, Angelo de Claro R, Wang Y, Shen YL. FDA Approval Summary: Nivolumab for the treatment of relapsed or progressive classical hodgkin lymphoma. Oncologist 2017; 22(5): 585-91.
[146]
Yan Q, Wang Y, Zhang W, Li Y. Novel azetidine-containing TZT-1027 analogues as antitumor agents. Mar Drugs 2016; 14(5): 85.
[147]
Emerson MV, Lauer AK. Current and emerging therapies for the treatment of age-related macular degeneration. Clin Ophthalmol 2008; 2(2): 377-88.
[148]
Fanale D, Bronte G, Passiglia F, Calò V. Stabilizing versus destabilizing the microtubules: A double-edge sword for an effective cancer treatment option? Anal Cell Pathol (Amst) 2015; 690-916.
[149]
Singh AV, Bandi M, Raje N, et al. A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells. Blood 2011; 117(21): 5692-700.
[150]
Losada A, Muñoz-Alonso MJ, García C, et al. Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin. Sci Rep 2016; 6: 35100.
[151]
Colado E, Paíno T, Maiso P, Ocio EM. Zalypsis has in vitro activity in acute myeloid blasts and leukemic progenitor cells through the induction of a DNA damage response. Haematologica 2011; 96(5): 687-95.
[152]
Bai R, Edler MC, Bonate PL, et al. Intracellular activation and deactivation of tasidotin, an analog of dolastatin 15: Correlation with cytotoxicity. Mol Pharmacol 2009; 75(1): 218-26.
[153]
Smith AB, Sugasawa K, Atasoylu O, et al. Design and synthesis of (+)-Discodermolide-Paclitaxel hybrids leading to enhanced biological activity. J Med Chem 2011; 54(18): 6319-27.
[154]
Kang HK, Choi M, Seo CH, Park Y. Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int J Mol Sci 2018; 19(3): 919.
[155]
White KN, Tenney K, Crews P. The bengamides: A mini-review of natural sources, analogues, biological properties, biosynthetic origins, and future prospects. J Nat Prod 2017; 80(3): 740-55.
[156]
Shilabin AG, Kasanah N, Wedge DE, Hamann MT. Lysosome and HER3 (ErbB3) selective anticancer agent kahalalide F: Semisynthetic modifications and antifungal lead-exploration studies. J Med Chem 2007; 50(18): 4340-50.
[157]
Vliet HJJ, Nishi N, Koezuka Y, et al. Effects of α‐galactosylceramide (KRN7000), interleukin‐12 and interleukin‐7 on phenotype and cytokine profile of human Vα24+ Vβ11+ T cells. Immunology 1999 Dec; 98(4): 557-63.
[158]
Lucke-Wold BP, Logsdon AF, Smith KEC, et al. Bryostatin-1 restores blood brain barrier integrity following blast-induced traumatic brain injury. Mol Neurobiol 2015; 52(3): 1119-34.
[159]
Lesma G, Sacchetti A, Bai R, et al. Hemiasterlin analogues incorporating an aromatic, and heterocyclic type C-terminus: Design, synthesis and biological evaluation. Mol Divers 2014; 18(2): 357-73.
[160]
Potts BC, Albitar MX, Anderson KC, et al. Marizomib, a proteasome inhibitor for all seasons: Preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets 2011; 11(3): 254-84.
[161]
Bhatnagar I, Kim SK. Immense essence of excellence: Marine microbial bioactive compounds. Mar Drugs 2010; 8(10): 2673-701.
[162]
Whitehead RP, Rankin C, Hoff PMG, et al. Phase II trial of depsipeptide (NSC-630176) in previously treated colorectal cancer patients with advanced disease: A southwest oncology group study (S0336). Invest New Drugs 2009; 27(5): 469-75.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy