Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Poly(vinyl pyridine)s: A Versatile Polymer in Catalysis

Author(s): Nader Ghaffari Khaligh*, Hanna S. Abbo, Mohd Rafie Johan and Salam J. J. Titinchi*

Volume 23, Issue 4, 2019

Page: [439 - 479] Pages: 41

DOI: 10.2174/1385272823666190320145410

Price: $65

Abstract

The PVP and its derivatives have been broadly applied in polymers, organic syntheses, and catalysis processes. The crosslinked PVP is a well-known polymer support for numerous reagents and catalysts. Cross-linked PVPs are commercially available polymers and have attracted much attention over the past due to their interesting properties such as the facile functionalization, high accessibility of functional groups, being nonhygroscopic, easy to prepare, easy filtration, and swelling in many organic solvents. A brief explanation of the reported applications of PVPs in different fields followed by the discussion on the implementation of methodologies for catalytic efficiency of PVP-based reagents in the organic synthesis is included. The aim is to summarize the literature under a few catalytic categories and to present each as a short scheme involving reaction conditions. In the text, discussions on the synthesis and the structural determination of some typical polymeric reagents are presented, and the mechanisms of some organic reactions are given. Where appropriate, advantages of reagents in comparison with the previous reports are presented. This review does not include patent literature.

Keywords: Poly(vinylpyridine), base catalyst, solid acid catalyst, supported-reagent, organic transformation, polymers.

Graphical Abstract
[1]
Owen, J. Comprehensive Polymer Science, 1st ed; Pergamon Press: New York, 1989.
[2]
Gil, E.S.; Hudson, S.M. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci., 2004, 29, 1173-1222.
[3]
Rodrigues, J.; Goncalves, J.; Mangrich, A.; Soldi, V.; Bertolino, J.; Pires, A. Thermal behavior and electrical conductivity of poly (vinyl pyridine)/copper complexes. Adv. Polym. Technol., 2000, 19, 113-119.
[4]
Rafique, U.; Mazhar, M.; Ali, S.; Khwaja, F. Analytical and electrical studies on poly(2-vinylpyridine) and its metal complexes. Synth. Met., 1996, 78, 73-77.
[5]
Atornigitjawat, P.; Runt, J. Ion conduction and polymer dynamics of poly(2-vinylpyridine)-lithium perchlorate. J. Phys. Chem., 2007, 111, 13483-13490.
[6]
Ratner, M.A.; Shriver, D.F. Ion transport in solvent-free polymers. Chem. Rev., 1988, 88, 109-124.
[7]
Da Silva, S.L.A.; De Barros, G.G. Ionic conductivity of swollen LDPE/poly(4-vinylpyridine) blend. Polym. Bull., 2002, 47, 579-585.
[8]
De Barros, G.G.; Sales, M.J.A.; De Britto, A.R.F. Low-density polyethylene modified by thermal polymerization of 4-vinylpyridine and methyl methacrylate: Structural studies. Polym. Eng. Sci., 1996, 36, 1125-1128.
[9]
Sales, M.J.A.; Barros, G.G. Effects of film thickness and inhibitor concentration on the sorption and thermal polymerization of acrylic acid in low-density polyethylene. J. Appl. Polym. Sci., 1993, 47, 1395-1399.
[10]
Ximenes, M.I.N.; Serra, O.A.; Barros, G.G. Eu3+ ions in the modified matrix polyethylene/poly (acrylic acid) fluorescence studies. Polym. Bull., 1992, 28, 61-68.
[11]
Sukhishvili, S.A.; Granic, S. Adsorbed Monomer Analog of a Common Polyelectrolyte. Phys. Rev. Lett., 1998, 80, 3646-3649.
[12]
Schmitz, K.S. Orientation effects for quaternized poly4-vinylpyridine adsorption onto an oxidized silicon surface. Macromolecules, 2000, 33, 2284-2285.
[13]
Kunz, M.S.; Shull, K.R.; Kellock, A.J. Colloidal gold dispersions in polymeric matrices. J. Colloid Interface Sci., 1993, 156, 240-249.
[14]
Shull, K.R.; Kellock, A.J. Metal particle adsorption and diffusion in a model polymer/metal composite system. J. Polym. Sci., Part B, Polym. Phys., 1995, 33, 1417-1422.
[15]
Kim, J.H.; Bae, S.H.; Chae, S.; Sohn, B.H. Inversion of diblock copolymer micelles by selective solvents for conversion of gold nanopatterns. Thin Solid Films, 2012, 520, 2022-2025.
[16]
Suntivich, R.; Choi, I.; Gupta, M.K.; Tsitsilianis, C.; Tsukruk, V. Gold nanoparticles grown on star-shaped block copolymer monolayers. Langmuir, 2011, 27, 10730-10738.
[17]
Lohmueller, T.; Bock, E.; Spatz, J.P. Synthesis of quasi-hexagonal ordered arrays of metallic nanoparticles with tuneable particle size. Adv. Mater., 2008, 20, 2297-2302.
[18]
Glass, R.; Moeller, M.; Spatz, J.P. Block copolymer micelle nanolithography. Nanotechnology, 2003, 14, 1153-1160.
[19]
Spatz, J.P.; Mossmer, S.; Hartmann, C.; Mooller, M.; Herzog, T.; Krieger, M.; Boyen, H.G.; Ziemann, P. Ordered deposition of inorganic clusters from micellar blockcopolymer films. Langmuir, 2000, 16, 407-415.
[20]
Ishizone, T.; Hirao, A.; Nakahama, S. Anionic polymerization of monomers containing functional groups. 6. Anionic ‎block copolymerization of styrene derivatives para-substituted with electron-withdrawing groups. Macromolecules, 1993, 26, 6964-6975.
[21]
Chern, C.S. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci., 2006, 31, 443-486.
[22]
Kawaguchi, S.; Ito, K. Dispersion polymerization. Adv. Polym. Sci., 2005, 175, 299-328.
[23]
Taylor, P. Ostwald ripening in emulsions. Adv. Colloid Interface Sci., 1998, 75, 107-163.
[24]
Jansen, T.G.T.; Meuldijk, J.; Lovell, P.A.; van Herk, A.M. On the miniemulsion polymerization of very hydrophobic monomers initiated by a completely water-insoluble initiator: Thermodynamics, kinetics, and mechanism. J. Polym. Sci. Part A Polym. Chem., 2016, 54, 2731-2745.
[25]
Xie, D.; Ren, X.; Xie, Y.; Zhang, X.; Liao, S. Large-scale synthesis of monodisperse red blood cell (RBC)-like polymer particles. ACS Macro Lett., 2016, 5, 174-176.
[26]
Peng, B.; Imhof, A. Surface morphology control of cross-linked polymer particles via dispersion polymerization. Soft Matter, 2015, 11, 3589-3598.
[27]
Willersinn, J.; Drechsler, M.; Antonietti, M.; Schmidt, B.V.K.J. Organized polymeric submicron particles via self-assembly and cross-Linking of double hydrophilic poly(ethylene oxide)-b-poly(N-vinylpyrrolidone) in aqueous solution. Macromolecules, 2016, 49, 5331-5341.
[28]
Epps, T.H. III.; O’Reilly, R.K. Block copolymers: Controlling nanostructure to generate functional materials-synthesis, characterization, and engineering. Chem. Sci., 2016, 7, 1674-1689.
[29]
Shen, H.; Eisenberg, A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules, 2000, 33, 2561-2572.
[30]
Satoh, K.; Kamigaito, M. Stereospecific living radical polymerization: dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev., 2009, 109, 5120-2156.
[31]
Levere, M.E.; Willoughby, I.; O’Donohue, S.; Wright, P.M.; Grice, A.J.; Fidge, C.; Becer, C.R.; Haddleton, D.M. Cu(0) mediated polymerization in toluene using online rapid GPC monitoring. J. Polym. Sci.Part A Polym. Chem., 2011, 49, 1753-1763.
[32]
Jenkins, A.D.; Jones, R.G.; Moad, G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl. Chem., 2010, 82, 483-491.
[33]
Rosen, B.M.; Percec, V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem. Rev., 2009, 109, 5069-5119.
[34]
Wright, P.M.; Mantovani, G.; Haddleton, D.M. Polymerization of methyl acrylate mediated by copper (0)/Me6-TREN in hydrophobic media enhanced by phenols; Single electron transfer-living radical polymerization. J. Polym. Sci.Part A Polym. Chem., 2008, 46, 7376-7385.
[35]
Matyjaszewski, K.; Tsarevsky, N.V.; Braunecker, W.A.; Dong, H.C.; Huang, J.Y.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon, J.A. Role of Cu(0) in Controlled/“Living” Radical Polymerization. Macromolecules, 2007, 40, 7795-7806.
[36]
Wang, W.X.; Zhang, Z.B.; Cheng, Z.P.; Zhu, J.; Zhou, N.C.; Zhu, X.L. Favorable hydrogen bonding in room-temperature Cu (0)-mediated controlled radical polymerization of 4-vinylpyridine. Polym. Chem., 2012, 3, 2731-2734.
[37]
Tsarevsky, N.V.; Braunecker, W.A.; Brooks, S.J.; Matyjaszewski, K. Rational selection of initiating/catalytic systems for the copper-mediated atom transfer radical polymerization of basic monomers in protic media: ATRP of 4-vinylpyridine. Macromolecules, 2006, 39, 6817-6824.
[38]
Miura, Y.; Dote, H. Syntheses of 12-arm star polymers and star diblock copolymers by nitroxide-mediated radical polymerization using dendritic dodecafunctional macroinitiators. J. Polym. Sci. Part A Polym. Chem., 2005, 43, 3689-3700.
[39]
Thomas, D.B.; Convertine, A.J.; Hester, R.D.; Lowe, A.B.; McCormick, C.L. Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations. Macromolecules, 2004, 37, 1735-1741.
[40]
Diaz, T.; Fischer, A.; Jonquieres, A.; Brembilla, A.; Lochon, P. Controlled polymerization of functional monomers and synthesis of block copolymers using a β-phosphonylated nitroxide. Macromolecules, 2003, 36, 2235-2241.
[41]
Convertine, A.J.; Sumerlin, B.S.; Thomas, D.B.; Lowe, A.B.; McCormick, C.L. Synthesis of block copolymers of 2- and 4-vinylpyridine by RAFT polymerization. Macromolecules, 2003, 36, 4679-4681.
[42]
Lau, K.K.S.; Gleason, K.K. Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): An experimental study. Macromolecules, 2006, 39, 3688-3694.
[43]
Petruczok, C.; Gleason, K. Initiated Chemical Vapor Deposition-Based Method for Patterning Polymer and Metal Microstructures on Curved Substrates. Adv. Mater., 2012, 24, 6445-6450.
[44]
Fischer, A.; Brembilla, A.; Lochon, P. Nitroxide-mediated radical polymerization of 4-vinylpyridine: Study of the pseudo-living character of the reaction and influence of temperature and nitroxide concentration. Macromolecules, 1999, 32, 6069-6072.
[45]
Bohrisch, J.; Wendler, U.; Jaeger, W. Controlled radical polymerization of 4-vinylpyridine. Macromol. Rapid Commun., 1997, 18, 975-982.
[46]
Karandikar, P.; Gupta, M. Synthesis of functional particles by condensation and polymerization of monomer droplets in silicone oils. Langmuir, 2017, 33, 7701-7707.
[47]
Nishiyama, S.; Tajima, M.; Yoshida, Y. Photo-irradiation effects on poly(vinylpyridines). Colloids Surf. A Physicochem. Eng. Asp., 2008, 313-314, 479-483.
[48]
Elmaci, A.; Hacaloglu, J. Thermal degradation of poly(vinylpyridine)s. Polym. Degrad. Stabil., 2009, 94, 738-743.
[49]
Orhan, T.; Hacaloglu, J. Thermal degradation of poly(2-vinylpyridine) copolymers. Polym. Degrad. Stabil., 2013, 98, 356-360.
[50]
Lekesiz, T.O.; Kaleli, K.; Uyar, T.; Kayran, C.; Hacaloglu, J. Preparation and characterization of polystyrene-b-poly(2-vinylpyridine) coordinated to metal or metal ion nanoparticles. J. Anal. Appl. Pyrolysis, 2014, 106, 81-85.
[51]
Chan, W.K. Metal containing polymers with heterocyclic rigid main chains. Coord. Chem. Rev., 2007, 251, 2104-2118.
[52]
Cho, J.H.; Hong, J.K.; Char, K.; Caruso, F. Nanoporous block copolymermicelle/micelle multilayer films with dual optical properties. J. Am. Chem. Soc., 2006, 128, 9935-9942.
[53]
Wu, K.H.; Wang, Y.R.; Hwu, W.H. FTIR and TGA studies of poly(4-vinylpyridine-co-divinylbenzene)–Cu(II) complex. Polym. Degrad. Stabil., 2003, 79, 195-200.
[54]
Tamami, B. Borujeni. K.P. Poly(vinylpyridine) supported reagents: A review. Iran. Polym. J., 2009, 18, 191-206.
[55]
Cheng, Z.; Li, C.; Qiu, Y.; Chang, X.; Tan, G.; Ren, B. Effect of topology structure on the electrochemical behavior of hydrogen-bonded self-assembled poly(4-vinylpyridine)-ferrocenyl dendron complexes. J. Organomet. Chem., 2017, 846, 223-229.
[56]
Schulze, M.; Handge, U.A.; Abetz, V. Preparation and characterisation of open-celled foams using polystyrene-b-poly(4-vinylpyridine) and poly(4-methylstyrene)-b-poly(4-vinylpyridine) diblock copolymers. Polymer., 2017, 108, 400-412.
[57]
Pietsch, T.; Metwalli, E.; Roth, S.V.; Gebhardt, R.; Gindy, N.; Müller-Buschbaum, P.; Fahmi, A. Directing the self-assembly of mesostructured hybrid materials: effect of polymer concentration and solvent type. Macromol. Chem. Phys., 2009, 210, 864-878.
[58]
Gohy. J.F. Block Copolymer Micelles. In:. Block Copolymers II. Advances in Polymer Science, Abetz V, Ed.; Springer, Heidelberg, Berlin. 2005, Vol. 190, pp. 65-136.
[59]
Hasegawa, S.; Ohashi, H.; Maekawa, Y.; Katakai, R.; Yoshida, M. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metal ions. Radiat. Phys. Chem., 2005, 72, 595-600.
[60]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 54, 3-12.
[61]
Kikuchi, A.; Okano, T. Pulsatile drug release control using hydrogels. Adv. Drug Deliv. Rev., 2002, 54, 53-77.
[62]
Miyata, T.; Uragami, T.; Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug Deliv. Rev., 2002, 54, 79-98.
[63]
Percot, A.; Zhu, X.X.; Lafleur, M. A simple FTIR spectroscopic method for the determination of the lower critical solution temperature of N-isopropylacrylamide copolymers and related hydrogels. J. Polym. Sci. Part B., 2000, 38, 907-915.
[64]
Harnish, B.; Robinson, J.T.; Pei, Z.; Ramström, O.; Yan, M. UV-cross-linked poly(vinylpyridine) thin films as reversibly responsive surfaces. Chem. Mater., 2005, 17, 4092-4096.
[65]
Zeng, B.; Yang, L.; Zheng, W.; Zhu, J.; Ma, X.; Liu, X.; Yuan, C.; Xu, Y.; Dai, L. Analysis of the formation process and performance of magnetic Fe3O4@Poly(4-vinylpyridine) absorbent prepared by in-situ synthesis. J. Mater. Sci. Technol., 2018, 34, 999-1007.
[66]
González-Navarrete, J.; Toral, M.I.; Leiva, A.; Yazdani-Pedram, M.; Ríos, H.E.; Briones-Olarán, X.; Urzúa, M.D. Adsorption of As (V) by poly (N-octyl-4-vinylpyridinium) bromide: Determination of As (V) by direct measurement of fluorescence on the solid phase. React. Funct. Polym., 2016, 109, 112-119.
[67]
Benabadji, K.I.; Mansri, A. Chromium removal using poly(4-vinylpyridinium)-modified treated clay salts. Desalination Water Treat., 2014, 52, 31-33.
[68]
Tavengwa, N.T.; Cukrowska, E.; Chimuka, L. Synthesis, adsorption and selectivity studies of N-propylquaternized magnetic poly(4-vinylpyridine) for hexavalent chromium. Talanta, 2013, 116, 670-677.
[69]
De Oliveira, T.F.; Ribeiro, E.S.; Segatelli, M.G.; Tarley, C.R.T. Enhanced sorption of Mn2+ ions from aqueous medium by inserting protoporphyrin as a pendant group in poly(vinylpyridine) network. Chem. Eng. J., 2013, 221, 275-282.
[70]
Zhou, L.F.; He, X.G.; Qiao, J.Q.; Lian, H.Z.; Ge, X.; Chen, H.Y. A practical interface designed for on-line polymer monolith microextraction: Synthesis and application of poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) monolith. J. Chromatogr. A, 2012, 1256, 15-21.
[71]
Tao, W.H.; Li, A.M.; Long, C.; Qian, H.M. Poly(vinylpyridine) adsorbent for the removal of SIPA from its aqueous solution. Chin. Chem. Lett., 2009, 20, 604-607.
[72]
Toral, M.I.; González-Navarrete, J.; Leiva, A.; Ríos, H.E.; Urzúa, M.D. Chromium retention properties of N-alkyl quaternized poly(4-vinylpyridine). Eur. Polym. J., 2009, 45, 730-737.
[73]
Rivas, B.L.; Quilodran, B.; Quiroz, E. Trace metal ion retention properties of crosslinked poly(4-vinylpyridine) and poly (acrylic acid). J. Appl. Polym. Sci., 2004, 92, 2908-2916.
[74]
El-Hamshary, H.; El-Garawany, M.; Assubaie, F.N.; Al-Eed, M. Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal. J. Appl. Polym. Sci., 2003, 89, 2522-2526.
[75]
Wang, X.; Zhang, T.; Wang, X.; Huang, J. 4-Vinylpyridine-modified post-cross-linked resins and their adsorption of phenol and Rhodamine B. J. Colloid Interface Sci., 2018, 531, 394-403.
[76]
Caruso, U.; Centore, R.; Panunzi, B.; Roviello, A.; Tuzi, A. Grafting poly(4-vinylpyridine) with a second-order nonlinear optically active nickel(II) chromophore. Eur. J. Inorg. Chem., 2005, 2747-2753.
[77]
Bessbousse, H.; Zran, N.; Fauléau, J.; Godin, B.; Lemée, V.; Wade, T.; Clochard, M.C. Poly(4-vinylpyridine) radiografted PVDF track etched membranes as sensors for monitoring trace mercury in water. Radiat. Phys. Chem., 2016, 118, 48-54.
[78]
Ghadimi, H.; Tehrani, R.M.A.; Basirun, W.J.; Ab Aziz, N.J.; Mohamed, N.; Ab Ghani, S. Electrochemical determination of aspirin and caffeine at MWCNTs-poly-4-vinylpyridine composite modified electrode. J. Taiwan Inst. Chem. Eng, 2016, 65, 101-109.
[79]
Gohary, N.A.E.; Madbouly, A.; Nashar, R.N.E.; Mizaikoff, B. Synthesis and application of a molecularly imprinted polymer for the voltammetric determination of famciclovir. Biosens. Bioelectron., 2015, 65, 108-114.
[80]
Zhao, L.; Zhao, F.; Zeng, B. Preparation of surface-imprinted polymer grafted with water-compatible external layer via RAFT precipitation polymerization for highly selective and sensitive electrochemical determination of brucine. Biosens. Bioelectron., 2014, 60, 71-76.
[81]
Bhakta, S.A.; Benavidez, T.E.; Garcia, C.D. Immobilization of glucose oxidase to nanostructured films of polystyrene-block-poly(2-vinylpyridine). J. Colloid Interface Sci., 2014, 430, 351-356.
[82]
Li, Y.; Yang, M.; She, Y. Humidity sensitive properties of crosslinked and quaternized poly (4-vinylpyridine-co-butyl methacrylate). Sens. Actuators B., 2005, 107, 252-257.
[83]
Aydogdu, Y.; Erol, I.; Yakuphanoğlu, F.; Aydogu, A.; Ahmedzade, M. Electrical conductivity and optical properties of copolymers based on 4-vinylpyridine and tetralincyclobutylhydroxyethylmethacrylate. Synth. Met., 2003, 139, 327-334.
[84]
Soylemez, S.; Yoon, B.; Toppare, L.; Swager, T.M. Quaternized polymer-single-walled carbon nanotube scaffolds for a chemiresistive glucose sensor. ACS Sens., 2017, 2, 1123-1127.
[85]
Zhu, R.; Desroches, M.; Yoon, B.; Swager, T.M. Wireless oxygen sensors enabled by Fe(II)-polymer wrapped carbon nanotubes. ACS Sens., 2017, 2, 1044-1050.
[86]
Mao, Y.; Mei, Z.; Wen, J.; Li, G.; Tian, Y.; Zhou, B.; Tian, Y. Honeycomb structured porous films from a platinum porphyrin-grafted poly(styrene-co-4-vinylpyridine) copolymer as an optical oxygen sensor. Sens. Actuators B Chem., 2018, 257, 944-953.
[87]
Li, Y.; Zhao, H.; Jiao, M.; Yang, M. Sulphonated polystyrene-b-poly(4-vinylpyridine) with nanostructures induced by phase separation as promising humidity sensitive material. Actuator B. Chem., 2018, 257, 1118-1127.
[88]
Rahim, S.; Khalid, S.; Bhanger, M.I.; Shah, M.R.; Malik, M.I. Polystyrene-block-poly(2-vinylpyridine)-conjugated silvernanoparticles as colorimetric sensor for quantitative determination of Cartap in aqueous media and blood plasma. Sens. Actuators B Chem., 2018, 259, 878-887.
[89]
Wu, D.; Yu, Y.; Zhang, J.; Guo, L.; Kong, Y. Chiral Poly (ionic liquid) with nonconjugated backbone as a fluorescent enantioselective sensor for phenylalaninol and tryptophan. ACS Appl. Mater. Interfaces, 2018, 10, 23362-23368.
[90]
Huh, M.; Gauthier, M.; Yun, S.I. Monomolecular films of arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers: Precursors to nanostructured carbon materials. Eur. Polym. J., 2017, 95, 575-580.
[91]
Allende-González, P.; Laguna-Bercero, M.Á.; Barrientos, L.; Valenzuela, M.L.; Díaz, C. Solid state tuning of tio2 morphology, crystal phase, and size through metal macromolecular complexes and its significance in the photocatalytic response. ACS Appl. Energy Mater, 2018, 1, 3159-3170.
[92]
Tarley, C.R.T.; Corazza, M.Z.; Somera, B.F.; Segatelli, M.G. Preparation of new ion-selective cross-linked poly (vinylimidazole-co-ethylene glycol dimethacrylate) using a double-imprinting process for the preconcentration of Pb2+ ions. J. Colloid Interface Sci., 2015, 450, 254-263.
[93]
Ling, J.L.W.; Khan, A.; Saad, B.; Ab Ghani, S. Electro polymerized 4-vinyl pyridine on 2B pencil graphite as ionophore for cadmium (II). Talanta, 2012, 88, 477-483.
[94]
Wang, Q.; Samitsu, S.; Ichinose, I. Ultrafiltration membranes composed of highly cross-linked cationic polymer gel: The network structure and superior separation performance. Adv. Mater., 2011, 23, 2004-2008.
[95]
Venault, A.; Trinh, K.M.; Chang, Y. A zwitterionic zP(4VP-r-ODA) copolymer for providing polypropylene membranes with improved hemocompatibility. J. Membr. Sci., 2016, 501, 68-78.
[96]
Liu, Z.; Cho, B.; Ouyang, T.; Feldman, B. Miniature amperometric self-powered continuous glucose sensor with linear response. Anal. Chem., 2012, 84, 3403-3409.
[97]
Xie, F.; Huang, C.; Wang, F.; Huang, L.; Weiss, R.A.; Leng, J.; Liu, Y. Carboxyl-terminated polybutadiene−poly(styrene-co-4-vinylpyridine) supramolecular thermoplastic elastomers and their shape memory behavior. Macromolecules, 2016, 49, 7322-7330.
[98]
Jeon, H.; Kim, D.J.; Park, M.S.; Ryu, D.Y.; Kim, J.H. Amphiphilic graft copolymer nanospheres: From colloidal self-assembly to CO2 capture membranes. ACS Appl. Mater. Interfaces, 2016, 8, 9454-9461.
[99]
Wang, H.; Lee, I.H.; Yan, M. A general method to determine ionization constants of responsive polymer thin films. J. Colloid Interface Sci., 2012, 365, 178-183.
[100]
Miller, T.; Van Colen, G.; Sander, B.; Golas, M.M.; Uezguen, S.; Weigandt, M.; Goepferich, A. Drug loading of polymeric micelles. Pharm. Res., 2013, 30, 584-595.
[101]
Wang, M.; Yan, F.; Zhao, L.; Zhang, Y.; Sorci, M. Preparation and characterization of a pH-responsive membrane carrier for meso-tetraphenylsulfonato porphyrin. RSC Advances, 2017, 7, 1687-1696.
[102]
Ma, B.; Ju, X.J.; Luo, F.; Liu, Y.Q.; Wang, Y.; Liu, Z.; Wang, W.; Xie, R.; Chu, L.Y. Facile fabrication of composite membranes with dual thermo- and pH-responsive characteristics. ACS Appl. Mater. Interfaces, 2017, 9, 14409-14421.
[103]
Ferro, L.; Scialdone, O.; Galia, A. Preparation of pH sensitive poly(vinilydenefluoride) porous membranes by grafting of acrylic acid assisted by supercritical carbon dioxide. J. Supercrit. Fluids, 2012, 66, 241-250.
[104]
Zhang, W.; Shi, L.; Ma, R.; An, Y.; Xu, Y.; Wu, K. Micellization of thermo- and pH-responsive triblock copolymer of poly (ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide). Macromolecules, 2005, 38, 8850-8852.
[105]
Orlov, M.; Tokarev, I.; Scholl, A.; Doran, A.; Minko, S. pH-Responsive thin film membranes from poly(2-vinylpyridine): Water vapor-induced formation of a microporous Structure. Macromolecules, 2007, 40, 2086-2091.
[106]
Zhai, G. pH- and temperature-sensitive Microfiltration membranes from blends of poly (vinylidene fluoride)-graft-poly(4-vinylpyridine) and poly(N-isopropylacrylamide). J. Appl. Polym. Sci., 2006, 100, 4089-4097.
[107]
Strack, G.; McDonald, R.; Salter, W.B.; Simpson, K.; Volkov, D. Owens, J. Composite polytetrafluoroethylene-poly(4-vinylpyridine) membranes for protection against phosphonate-based cholinesterase inhibitors. J. Mater. Sci., 2017, 52, 12902-12912.
[108]
Shevate, R.; Karunakaran, M.; Kumar, M.; Peinemann, K.V. Polyanionic pH-responsive polystyrene-b-poly(4-vinylpyridine-N-oxide) isoporous membranes. J. Membr. Sci., 2016, 501, 161-168.
[109]
Li, D.; He, Q.; Cui, Y.; Li, J. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem. Mater., 2007, 19, 412-417.
[110]
Xing, Z.; Tay, S.W.; Ng, Y.H.; Hong, L. Solar heat reflective coating formed of polystyrene chains bearing 4-vinylpyridine-rich end segments. Polymer., 2016, 87, 170-180.
[111]
Sharma, A.; Kroon, R.; Lewis, D.A.; Andersson, G.G.; Andersson, M.R. Poly(4-vinylpyridine): A new interface layer for organic solar cells. ACS Appl. Mater. Interfaces, 2017, 9, 10929-10936.
[112]
Li, Y.; Sun, Y. Poly(4-vinylpyridine): a polymeric ligand for mixed-mode protein chromatography. J. Chromatogr. A, 2014, 1373, 97-105.
[113]
Sun, Y.S.; Lin, C.F.; Luo, S.T. Two-dimensional nitrogen-enriched carbon nanosheets with surface-enhanced raman scattering. J. Phys. Chem. C, 2017, 121, 14795-14802.
[114]
Tiller, J.C.; Lee, S.B.; Lewis, K.; Klibanov, A.M. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol. Bioeng., 2002, 79, 465-471.
[115]
Schlipköter, H.W. Possibilities of causal prophylaxis and therapy of pneumoconiosis. Arch. Environ. Health, 1970, 21, 181-191.
[116]
Zhao, J.; Liu, J.; Li, G. Long-term follow-up observations of the therapeutic effect of PVNO on human silicosis. Zentralbl. Bakteriol. Mikrobiol. Hyg. B, 1983, 178, 259-262.
[117]
Idec-Sadkowska, I.; Andrzejak, R.; Antonowicz-Juchniewicz, J.; Kaczmarek-Wdowiak, B. Trials of casual treatment of silicosis. Med. Pr., 2006, 57, 271-280.
[118]
Ghadimi, H.; Tehrani, R.M.A.; Ali, A.S.M.; Mohamed, N.; Ab Ghani, S. Sensitive voltammetric determination of paracetamol by poly(4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta, 2013, 765, 70-76.
[119]
Lacroix, P.G.; Lin, W.; Wong, G.K. Poly(vinylpyridine) and related polymers as guests for organotransition-metal-based NLO chromophores. Chem. Mater., 1995, 7, 1293-1298.
[120]
Malynych, S.; Luzinov, I.; Chumanov, G. Poly (vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles. J. Phys. Chem. B, 2002, 106, 1280-1285.
[121]
Creutz, S.; Jérôme, R. Effectiveness of poly(vinylpyridine) block copolymers as stabilizers of aqueous titanium dioxide dispersions of a high solid content. Langmuir, 1999, 15, 7145-7156.
[122]
Su, Y.; Yan, R.; Dan, M.; Xu, J.; Wang, D.; Zhang, W.; Liu, S. Synthesis of hierarchical hollow silica microspheres containing surface nanoparticles employing the quasi-hard template of poly(4-vinylpyridine) microspheres. Langmuir, 2011, 27, 8983-8989.
[123]
Thickett, S.C.; Neto, C.; Harris, A.T. Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv. Mater., 2011, 23, 3718-3722.
[124]
Cho, H.; Park, H.; Russell, T.P.; Park, S. Precise placements of metal nanoparticles from reversible block copolymer nanostructures. J. Mater. Chem., 2010, 20, 5047-5051.
[125]
Koh, H.D. Changez, M.; Lee, J.S. Au/CdS hybrid nanoparticles in block copolymer micellar shells. Macromol. Rapid Commun., 2010, 31, 1798-1804.
[126]
Papp, S.; Korosi, L.; Gool, B.; Dederichs, T.; Mela, P.; Moller, M.; Dékány, I. Formation of gold nanoparticles in diblock copolymer micelles with various reducing agents: kinetic and thermodynamic studies. J. Therm. Anal. Calorim., 2010, 101, 865-872.
[127]
Elmaci, A.; Hacaloglu, J.; Kayran, C.; Sakellariou, G.; Hadjichristidis, N. Thermal decomposition of polystyrene-b-poly(2-vinylpyridine) coordinated to conanoparticles. Polym. Degrad. Stabil., 2009, 94, 2023-2027.
[128]
Akasaka, S.; Mori, H.; Osaka, T.; Mareau, V.H.; Hasegawa, H. Controlled introduction of metal nanoparticles into a microdomain structure. Macromolecules, 2009, 42, 1194-1202.
[129]
Sakamoto, N.; Harada, M.; Hashimoto, T. In situ and time-resolved SAXS studies of Pdnanoparticle formation in a template of block copolymer microdomain structures. Macromolecules, 2006, 39, 1116-1124.
[130]
Wang, W.; Zhao, J.; Yu, H.; Zhou, N.; Zhang, Z.; Zhu, X. Simultaneously improving controls over molecular weight and stereoregularity of Poly(4-vinylpyridine) via a hydrogen bonding-facilitated controlled radical polymerization. Polymer., 2013, 54, 3248-3253.
[131]
Lutz, J.F.; Jakubowski, W.; Matyjaszewski, K. Controlled/living radical polymerization of methacrylic monomers in the presence of lewis acids: Influence on tacticity. Macromol. Rapid Commun., 2004, 25, 486-492.
[132]
Miura, Y.; Satoh, T.; Narumi, A.; Nishizawa, O.; Okamoto, Y.; Kakuchi, T. Atom transfer radical polymerization of methyl methacrylate in fluoroalcohol: Simultaneous control of molecular weight and tacticity. Macromolecules, 2005, 38, 1041-1043.
[133]
Miura, Y.; Satoh, T.; Narumi, A.; Nishizawa, O.; Okamoto, Y.; Kakuchi, T. Synthesis of well-defined syndiotactic poly(methyl methacrylate) with low-temperature atom transfer radical polymerization in fluoro alcohol. J. Polym. Sci. Part A Polym. Chem., 2006, 44, 1436-1446.
[134]
Kamigaito, M.; Satoh, K. Stereospecific living radical polymerization for simultaneous control of molecular weight and tacticity. J. Polym. Sci. Part A Polym. Chem., 2006, 44, 6147-6158.
[135]
Liu, W.; Tang, K.; Guo, Y.; Koike, Y.; Okamoto, Y. Tacticity control in the radical polymerization of 2,2,2-trifluoroethyl methacrylate with fluoroalcohol. J. Fluor. Chem., 2003, 123, 147-151.
[136]
Liu, W.; Koike, Y.; Okamoto, Y. Stereochemistry of the radical polymerization of vinyl pentafluorobenzoate. Polymer., 2004, 45, 5491-5495.
[137]
Zhao, L.; Tsuchiya, K.; Inoue, Y. Fully-biodegradable poly(3-hydroxybutyrate)/poly(vinyl alcohol) blend films with compositional gradient. Macromol. Biosci., 2004, 4, 699-705.
[138]
Gibson, H.; Bailey, F. Chemical modification of polymers. Borohydride reducing agents derived from anion exchange resins. J. Chem. Soc. Chem. Commun., 1977, 815a.
[139]
Hutchins, R.; Natale, N.; Taffer, I. Cyanoborohydride supported on an anion exchange resin as a selective reducing agent. J. Chem. Soc. Chem. Commun., 1978, 1088-1089.
[140]
Amaratunga, W.; Fréchet, J.M. Polymeric reagents VII. Polystyryldiphenylphosphine tetrahydroborate copper I: A new recyclable reducing agent. Polymer Prepr., 1981, 22, 151-152.
[141]
Lakouraj, M.; Tajbakhsh, M.; Mahalli, M. Ionene-Bound Borohydrides: Efficient, selective, and versatile Polymer-Supported reducing agents. Monatsh. Chem., 2007, 139, 117-123.
[142]
Caiqin, Q.; Ling, X.; Yumin, D.; Xiaowen, S.; Jiawei, C. A new cross-linked quaternized-chitosan resin as the support of borohydride reducing agent. React. Funct. Polym., 2002, 50, 165-171.
[143]
Goudgaon, N.; Wadgaonkar, P.; Kabalka, G. The Reduction of α,β-Unsaturated Nitroalkenes to Nitroalkanes with Borohydride Supported on an Ion Exchange Resin. Synth. Commun., 1989, 19, 805-811.
[144]
Min Yoon, N.; Bae Park, K.; Soo Gyoung, Y. Chemoselective reduction of carbonyl compounds with borohydride exchange resin in alcoholic solvents. Tetrahedron Lett., 1983, 24, 5367-5370.
[145]
Kabalka, G.; Wadgaonkar, P.; Chatla, N. The Reduction of Azides with Borohydride Supported on an Ion Exchange Resin. Synth. Commun., 1990, 20, 293-299.
[146]
Bacquet, M.; Salunkhe, M.; Caze, C. Influence of a spacer on the kinetics of reduction of carbonyl compounds with porous borohydride exchange resin. React. Polym., 1992, 18, 185-190.
[147]
Hallensleben, M.L. Preparation of poly (4-vinylpyridine borane) and its action as polymeric reducing reagent. J. Polym. Sci. Symp, 1974, 47, 1-9.
[148]
Katritzky, A.R. Infrared absorption of heteroaromatic and benzenoid six-membered monocyclic nuclei. Part VI. Pyridine–boron complexes. J. Chem. Soc., 1959, 2049.
[149]
Firouzabadi, H.; Tamami, B.; Goudarzian, N. Cross-linked polyvinylpyridine supported zinc borohydride as a highly chemoselective reducing agent. Synth. Commun., 1991, 21, 2275-2285.
[150]
Tamami, B.; Goudarzian, N. Polymer supported zinc borohydride: a stable, efficient, selective, and regenerable reducing agent for variety of organic compounds. Iran. J. Chem. Chem. Eng, 1996, 15, 63-71.
[151]
Tamami, B.; Goudarzian, N. Polymer supported ziroconium borohydride: a stable, efficient and regenerable reducing agent. J. Chem. Soc. Chem. Commun., 1994, 1079.
[152]
Khaligh, N.G. Poly(1,4-butyl-bis-vinylpyridinium) borohydride as a new stable and efficient reducing agent in organic synthesis. C. R. Chim., 2013, 16, 721-727.
[153]
Khaligh, N.G.; Ghasem-Abadi, P.G.; Mihankhah, T. Poly(n-butyl-4-vinylpyridinium) borohydride as a new stable and efficient reducing agent in organic synthesis. C. R. Chim., 2014, 17, 23-29.
[154]
Seyden-Penne, J. Reductions by the alumino- and borohydrides in organic synthesis, 2nd ed; Wiley-VCH: New York, 1997.
[155]
Gribble, G.; Ferguson, D. Reactions of sodium borohydride in acidic media. Selective reduction of aldehydes with sodium triacetoxyborohydride. J. Chem. Soc. Chem. Commun., 1975, 535-536.
[156]
Pribyl, J.; Fletcher, B.; Steckle, W.; Taylor-Pashow, K.; Shehee, T.; Benicewicz, B. Photoinitiated polymerization of 4-vinylpyridine on polyHIPE foam surface toward improved Pu separations. Anal. Chem., 2017, 89, 5174-5178.
[157]
Pribyl, J.G.; Taylor-Pashow, K.M.L.; Shehee, T.C.; Benicewicz, B.C. High-Capacity Poly(4-vinylpyridine) Grafted PolyHIPE Foams for Efficient Plutonium Separation and Purification. ACS Omega, 2018, 3, 8181-8189.
[158]
Ogawa, H.; Nishikawa, Y.; Takenaka, M.; Fujiwara, A.; Nakanishi, Y.; Tsujii, Y.; Takata, M.; Kanaya, T. Visualization of individual images in patterned organic-inorganic multilayers using GISAXS-CT. Langmuir, 2017, 33, 4675-4681.
[159]
Sun, Y.S.; Lin, C.F.; Luo, S.T.; Su, C.Y. Block-copolymer-templated hierarchical porous carbon nanostructures with nitrogen-rich functional groups for molecular sensing. ACS Appl. Mater. Interfaces, 2017, 9, 31235-31244.
[160]
Venault, A.; Lai, M.W.; Jhong, J.F.; Yeh, C.C.; Yeh, L.C.; Chang, Y. Superior Bioinert Capability of Zwitterionic Poly(4-vinylpyridine propylsulfobetaine) Withstanding Clinical Sterilization for Extended Medical Applications. ACS Appl. Mater. Interfaces, 2018, 10, 17771-17783.
[161]
Olah, G.A.; Mathew, T.; Goeppert, A.; Török, B.; Bucsi, I.; Li, X.Y.; Wang, Q.; Martinez, E.R.; Batamack, P.; Aniszfeld, R.; Prakash, G.K. Ionic liquid and solid HF equivalent amine-poly(hydrogenfluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation. J. Am. Chem. Soc., 2005, 127, 5964-5969.
[162]
Prakash, G.K.S.; Colmenares, J.C.; Batamack, P.T.; Mathew, T.; Olah, G.A. Poly(4-vinylpyridine) catalyzed selective methanolysis of methyl and methylene bromides. Tetrahedron Lett., 2009, 50, 6016-6018.
[163]
Tai, A.; Iwaoka, Y.; Ito, H. Regioselective monoacylation of 2-O-α-D-glucopyranosyl-L-ascorbic acid by a polymer catalyst in N,N-dimethylformamide. Carbohydr. Res., 2011, 346, 2511-2514.
[164]
Shirini, F.; Khaligh, N.G. Poly(4-vinylpyridine) catalyzed chemoselective O-TMS protection of alcohols and phenols and N-Boc protection of amines. J. Iran. Chem. Soc, 2012, 9, 495-502.
[165]
Albadi, J.; Mansournezhad, A.; Darvishi-Paduk, M. Poly(4-vinylpyridine): As a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives. Chin. Chem. Lett., 2013, 24, 208-210.
[166]
Li, Q.; Tao, W.; Li, A.; Zhou, Q.; Shuang, C. Poly (4-vinylpyridine) catalyzed isomerization of maleic acid to fumaric acid. Appl. Catal. A Gen., 2014, 484, 148-153.
[167]
Khaligh, N.G.; Abbo, H.S.; Titinchi, S.J.J. Synthesis of N-methyl imines in the presence of poly(N-vinylpyridine) as a reusable solid base catalyst by a mechanochemical process. Res. Chem. Intermed., 2017, 43, 901-910.
[168]
Tansukawat, N.D.; See, A.E.; Jiranuntarat, S.; Joshua, R.; Corbin, J.R.; Schomaker, J.M. Method for small-scale production of deuterochloroform. J. Org. Chem., 2018, 83, 8739-8742.
[169]
Caporusso, A.M.; Innocenti, P.; Aronica, L.A.; Vitulli, G.; Gallina, R.; Biffis, A.; Zecca, M.; Corain, B. Functional resins in palladium catalysis: promising materials for Heck reaction in aprotic polar solvents. J. Catal., 2005, 234, 1-13.
[170]
Evangelisti, C.; Panziera, N.; Pertici, P.; Vitulli, G.; Salvadori, P.; Battocchio, C.; Polzonetti, G. Palladium nanoparticles supported on polyvinylpyridine: Catalytic activity in Heck-type reactions and XPS structural studies. J. Catal., 2009, 262, 287-293.
[171]
Yu, K.; Sommer, W.; Richardson, J.M.; Weck, M.; Jones, C.W. Evidence that SCS pincer Pd(II) complexes are only precatalysts in Heck catalysis and the implications for catalyst recovery and reuse. Adv. Synth. Catal., 2005, 347, 161-171.
[172]
Mennecke, K.; Solodenko, W.; Kirschning, A. Carbon-carbon cross-coupling reactions under continuous flow conditions using Poly(vinylpyridine) doped with Palladium. Synthesis, 2008, 1589-1599.
[173]
Solodenko, W.; Mennecke, K.; Vogt, C.; Gruhl, S.; Kirschning, A. Polyvinylpyridine, a versatile solid phase for coordinative immobilisation of Palladium precatalysts - Applications in Suzuki-Miyaura reactions. Synthesis, 2006, 1873-1881.
[174]
Shi, P.; Gao, C.; He, X.; Sun, P.; Zhang, W. Multicompartment nanoparticles of poly(4-vinylpyridine) graft block terpolymer: Synthesis and application as scaffold for efficient Au nanocatalyst. Macromolecules, 2015, 48, 1380-1389.
[175]
Yang, L.; Zhang, M.; Lan, Y.; Zhang, W. Hollow shell–corona microspheres with a mesoporous shell as potential microreactors for Au-catalyzed aerobic oxidation of alcohols. New J. Chem., 2010, 34, 1355-1364.
[176]
Schrinner, M.; Proch, S.; Mei, Y.; Kempe, R.; Miyajima, N.; Ballauff, M. Stable Bimetallic Gold–Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes: Synthesis, Characterization, and Application for the Oxidation of Alcohols. Adv. Mater., 2008, 20, 1928-1933.
[177]
Biffis, A.; Cunial, S.; Spontoni, P.; Prati, L. Microgel-stabilized gold nanoclusters: Powerful “quasi-homogeneous” catalysts for the aerobic oxidation of alcohols in water. J. Catal., 2007, 251, 1-6.
[178]
Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc., 2005, 127, 9374-9375.
[179]
Pulko, I.; Krajnc, P. High internal phase emulsion templating - a path to hierarchically porous functional polymers. Macromol. Rapid Commun., 2012, 33, 1731-1746.
[180]
Silverstein, M.S. PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog. Polym. Sci., 2014, 39, 199-234.
[181]
Brown, J.F.; Krajnc, P.; Cameron, N.R. PolyHIPE supports in batch and flow through Suzuki cross-coupling reactions. Ind. Eng. Chem. Res., 2005, 44, 8565-8572.
[182]
Koler, A.; Paljevac, M.; Cmager, N.; Iskra, J.; Kolar, M.; Krajnc, P. Poly(4-vinylpyridine) polyHIPEs as catalysts for cycloaddition click reaction. Polymer., 2017, 126, 402-407.
[183]
Sahiner, N.; Turhan, T.; Lyon, L.A. ILC (ionic liquid colloids) based on p(4-VP) (poly(4-vinyl pyridine)) microgels: Synthesis, characterization and use in hydrogen production. Energy, 2014, 66, 256-263.
[184]
Sahiner, N.; Yildiz, S. Preparation of superporous poly(4-vinylpyridine) cryogel and their templated metal nanoparticle composites for H2 production via hydrolysis reactions. Fuel Process. Technol., 2014, 126, 324-331.
[185]
Oliveira, A.A.; Teixeira, I.F.; Leandro, P.; Ribeiro, E.L.; Lorencon, E.; Ardisson, J.D.; Fernandez-Outon, L.; Waldemar, A.A.; Macedo, F.; Moura, C.C. Magnetic amphiphilic nanocomposites produced via chemical vapor deposition of CH4 on Fe–Mo/nano-Al2O3. Appl. Catal. A., 2013, 456, 126-134.
[186]
Teixeira, I.F.; Oliveira, A.A.; Christofani, T.; Moura, C.C. Biphasic oxidation promoted by magnetic amphiphilic nanocomposites undergoing a reversible emulsion process. J. Mater. Chem. A., 2013, 1, 10203-10208.
[187]
De Souza, W.F.; Guimaraes, I.; Guerreiro, M.C.; Oliveira, L.C.A. Catalytic oxidation of sulfur and nitrogen compounds from diesel fuel. Appl. Catal. A., 2009, 360, 205-209.
[188]
Vít, Z.; Gulková, D.; Kaluža, L.; Kupčík, J. Pd–Pt catalysts on mesoporous SiO2–Al2O3 with superior activity for HDS of 4,6-dimethyldibenzothiophene: Effect of metal loading and support composition. Appl. Catal. B, 2015, 179, 44-53.
[189]
Ali, M.F.; Al-Malki, A.; El-Ali, B.; Martinie, G.; Siddiqui, M.N. Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques. Fuel, 2006, 85, 1354-1363.
[190]
Zhao, H.; Baker, G.A. Oxidative desulfurization of fuels using ionic liquids: A review. Front. Chem. Sci. Eng, 2015, 9, 262-279.
[191]
Zhu, W.; Li, H.; Jiang, X.; Yan, Y.; Lu, J.; Xia, J. Oxidative desulfurization of fuels catalyzed by peroxotungsten and peroxomolybdenum complexes in ionic liquids. Energy Fuels, 2007, 21, 2514-2516.
[192]
Piccinino, D.; Abdalghani, I.; Botta, G.; Crucianelli, M.; Passacantando, M.; Di Vacri, M.L.; Saladino, R. Preparation of wrapped carbon nanotubes poly(4-vinylpyridine)/MTO based heterogeneous catalysts for the oxidative desulfurization (ODS) of model and synthetic diesel fuel. Appl. Catal. B Environ, 2017, 200, 392-401.
[193]
Tarasevich, M.R.; Sadkowski, A.; Yeager, E. In omprehensive Treatise of Electrochemistry, B. E. Conway, J. O. M. Bockris, E. Yeager, S. U. M. Kahn, R. E. White, Eds.; Plenum: New York. 1983, Vol. 7, pp 301-398.
[194]
Adzic, R.R. In Electrocatalysis., J. Lipkowski, P. N. Ross, Eds.; Wiley-VCH: New York. 1998, pp 197-242.
[195]
Kim, J.; Gewirth, A.A. Electrocatalysis of peroxide reduction by Au-stabilized, Fe-containing poly(vinylpyridine) films. J. Phys. Chem. B, 2005, 109, 9684-9690.
[196]
Guo, W.; Wang, G.; Wang, Q.; Dong, W.; Yang, M.; Huang, X.; Yu, J.; Shi, Z. A hierarchical Fe3O4@P4VP@MoO2(acac)2 nanocomposite: Controlled synthesis and green catalytic application. J. Mol. Catal. Chem., 2013, 378, 344-349.
[197]
Liu, X.Q.; Guan, Y.P.; Ma, Z.Y.; Liu, H.Z. Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir, 2004, 20, 10278-10282.
[198]
Turmanova, S.; Vassilev, K.; Boneva, S. Preparation, structure and properties of metal–copolymer complexes of poly-4-vinylpyridine radiation-grafted onto polymer films. React. Funct. Polym., 2008, 68, 759-767.
[199]
Albadi, J.; Shirini, F.; Abasi, J.; Armand, N.; Motaharizadeh, T. A green, efficient and recyclable poly(4-vinylpyridine)-supported copper iodide catalyst for the synthesis of coumarin derivatives under solvent-free conditions. C. R. Chim., 2013, 16, 407-411.
[200]
Senge, M.O.; Davis, M.J. Porphyrin (porphine)‒A neglected parent compound with potential. J. Porphyr. Phthalocyanines, 2010, 14, 557-567.
[201]
Barron, P.M.; Wray, C.A.; Hu, C.; Guo, Z.; Choe, W. A bioinspired synthetic approach for building metal‒organic frameworks with accessible metal centers. Inorg. Chem., 2010, 49, 10217-10219.
[202]
Liu, W.; Groves, J.T. Manganese porphyrins catalyze selective C‒H bond halogenations. J. Am. Chem. Soc., 2010, 132, 12847-12849.
[203]
Zagal, J.H.; Griveau, S.; Silva, J.F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev., 2010, 254, 2755-2791.
[204]
Dunbar, A.D.F.; Brittle, S.; Richardson, T.H.; Hutchinson, J.; Hunter, C.A. Detection of volatile organic compounds using porphyrin derivatives. J. Phys. Chem. B, 2010, 114, 11679-11702.
[205]
Wang, H.L.; Sun, Q.; Chen, M.; Miyake, J.; Qian, D.J. Layer-by-Layer assembly and characterization of multilayers of a manganese porphyrin linked poly(4-vinylpyridinium) derivative and poly (styrenesulfonic acid-o-maleic) acid. Langmuir, 2011, 27, 9880-9889.
[206]
Wang, S.; Zhang, M.; Zhang, W. Yolk-Shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal., 2011, 1, 207-211.
[207]
Wen, F.; Zhang, W.; Wei, G.; Wang, Y.; Zhang, J.; Zhang, M.; Shi, L. Synthesis of noble metal nanoparticles embedded in the shell layer of core−shell poly(styrene-co-4-vinylpyridine) micospheres and their application in catalysis. Chem. Mater., 2008, 20, 2144-2150.
[208]
Wang, S.; Zhang, M.; Wang, D.; Zhang, W.; Liu, S. Synthesis of hollow mesoporous silica microspheres through surface sol–gel process on polystyrene-co-poly(4-vinylpyridine) core–shell microspheres. Microporous Mesoporous Mater., 2011, 139, 1-7.
[209]
Khanal, A.; Inoue, Y.; Yada, M.; Nakashima, K. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. J. Am. Chem. Soc., 2007, 129, 1534-1535.
[210]
Pathak, S.; Greci, M.T.; Kwong, R.C.; Mercado, K.; Prakash, G.K.S.; Olah, G.A.; Thompson, M.E. Synthesis and applications of palladium-coated poly(vinylpyridine) nanospheres. Chem. Mater., 2000, 12, 1985-1989.
[211]
Wang, H.; Thia, L.; Li, N.; Ge, X.; Liu, Z.; Wang, X. Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene. Appl. Catal. B Environ, 2015, 166-167, 25-31.
[212]
Zhang, Z.; Sèbea, G.; Wang, X.; Tam, K.C. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Carbohydr. Polym., 2018, 182, 61-68.
[213]
Fan, S.; Luan, Y.; Wang, J.; Gao, H.; Zhang, X.; Wang, G. Monodispersed poly(4-vinylpyridine) spheres supported Fe(III) material: An efficient and reusable catalyst for benzylic oxidation. J. Mol. Catal.A Chem., 2015, 404-405, 186-192.
[214]
Jumde, R.P.; Marelli, M.; Scotti, N.; Mandoli, A.; Psaro, R.; Evangelisti, C. Ultrafine palladium nanoparticles immobilized into poly(4-vinylpyridine)-based porous monolith for continuous-flow Mizoroki–Heck reaction. J. Mol. Catal. A Chem., 2016, 414, 55-61.
[215]
Xi, X.; Liu, Y.; Shi, J.; Cao, S. Palladium complex of poly (4-vinylpyridine-co-acrylic acid) for homogeneous hydrogenation of aromatic nitro compounds. J. Mol. Catal. A Chem., 2003, 192, 1-7.
[216]
Hung-Low, F.; Uzcátegui, G.C.; Ortega, M.C.; Rivas, A.B.; Yanez, J.E.; Alvarez, J.; Pardey, A.J.; Longo, C. Hydroesterification and hydroformylation of 1-hexene catalyzed by rhodium complexes immobilized on poly(4-vinylpyridine). Catal. Today, 2005, 107-108, 273-281.
[217]
Stamenova, R.; Tsvetanov, C.B.; Vasssilev, K.G.; Tanielyan, S.K. Ivanov, Polymer-supported molybdenum and vanadium catalysts for epoxidation of alkenes by alkyl hydroperoxides. J. Appl. Polym. Sci., 1991, 42, 807-812.
[218]
Cao, L.J.; Wang, G.; Shi, L.; Yang, M.; Sun, D.B. Preparation and catalytic Application of Poly 4-Vinylpyridine Microspheres. J. Appl. Polym. Sci., 2010, 116, 3178-3183.
[219]
Khaligh, N.G.; Shirini, F. Preparation, characterization and use of poly(4-vinylpyridinium) hydrogen sulfate salt as an eco-benign, efficient and reusable solid acid catalyst for the chemoselective 1,1-diacetate protection and deprotection of aldehydes. J. Mol. Catal. A Chem., 2011, 348, 20-29.
[220]
Khaligh, N.G.; Shirini, F. Ultrasound assisted the chemoselective 1,1-diacetate protection and deprotection of aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate salt as an eco-benign, efficient and reusable solid acid catalyst. Ultrason. Sonochem., 2013, 20, 19-25.
[221]
Jiang, Y.X.; Chen, X.M.; Mo, Y.F.; Tong, Z.F. Preparation and properties of Al-PILC supported SO42−/TiO2 superacid catalyst. J. Mol. Catal. A Chem., 2004, 213, 231-234.
[222]
Borah, K.J.; Borah, R. Poly(4-vinylpyridine)-supported sulfuric acid: an efficient solid acid catalyst for the synthesis of coumarin derivatives under solvent-free conditions. Monatsh. Chem., 2011, 142, 1253-1257.
[223]
Khaligh, N.G. Poly(4-vinylpyridinium) hydrogen sulfate catalyzed synthesis of 12-aryl-12H-indeno [1,2-b] naphtho [3,2-e]pyran-5,11,13-triones. Tetrahedron Lett., 2012, 53, 1637-1640.
[224]
Khaligh, N.G. Poly(4-vinylpyridinium) hydrogen sulfate: an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions. Catal. Sci. Technol., 2012, 2, 2211-2215.
[225]
Wu, L.; Zhang, J.; Fang, L.; Yang, C.; Yan, F. Silica chloride catalyzed synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-diones. Dyes Pigm, 2010, 86, 93-96.
[226]
Ko, S.; Yao, C.F. Heterogeneous catalyst: Amberlyst-15 catalyzes the synthesis of 14-substituted-14H-dibenzo[a,j]xanthenes under solvent-free conditions. Tetrahedron Lett., 2006, 47, 8827-8829.
[227]
Shaterian, H.R.; Ghashang, M.; Hassankhani, A. One-pot synthesis of aryl 14H-dibenzo[a,j]xanthene leuco-dye derivatives. Dyes Pigm, 2008, 76, 564-568.
[228]
Wu, L.Q.; Wu, Y.F.; Yang, C.G.; Yang, L.M.; Yang, L.J. Silica supported perchloric acid: an efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-diones. J. Braz. Chem. Soc., 2010, 21, 941-945.
[229]
Khaligh, N.G. Poly(4-vinylpyridinium) hydrogen sulfate: A novel and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes under conventional heating and ultrasound irradiation. Ultrason. Sonochem., 2012, 19, 736-739.
[230]
Nagarapu, L.; Kantevari, S.; Mahankhali, V.C.; Apuri, S. Potassium dodecatungstocobaltate trihydrate (K5CoW12O40.3H2O): A mild and efficient reusable catalyst for the synthesis of aryl-14H-dibenzo[a.j]xanthenes under conventional heating and microwave irradiation. Catal. Commun., 2007, 8, 1173-1177.
[231]
Madhav, J.V.; Reddy, V.T.; Reddy, P.N.; Reddy, M.N.; Kuarm, S.; Crooks, P.A.; Rajitha, B. Cellulose sulfuric acid: An efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of aryl-14H-dibenzo[a.j]xanthenes under solvent-free conditions. J. Mol. Catal. A Chem., 2009, 304, 85-87.
[232]
Khaligh, N.G. Ultrasound-assisted one-pot synthesis of substituted coumarins catalyzed by poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst. Ultrason. Sonochem., 2013, 20, 1062-1068.
[233]
Banothu, J.; Bavantula, R.; Crooks, P.A. Poly(4-Vinylpyridinium) hydrogen sulfate catalyzed an efficient and ecofriendly protocol for the one-pot multicomponent synthesis of 1,8-acridinediones in aqueous medium; J. Chem, 2013. 6 pages
[234]
Ghashang, M.; Sheik Mansoor, S.; Aswin, K. Poly(4‐vinylpyridinium)hydrogen sulfate: A novel and efficient catalyst for the synthesis of 13‐aryl‐indeno [1,2‐b]naphtha [1,2‐e]pyran‐12(13H)‐ones under solvent‐free conditions. Chin. J. Catal., 2014, 35, 43-48.
[235]
Khaligh, N.G. Three‐component, one‐pot synthesis of benzo[f]indenoquinoline derivatives catalyzed by poly(4‐vinylpyridinium) hydrogen sulfate. Chin. J. Catal., 2014, 35, 474-480.
[236]
Wang, X.S.; Zhou, J.; Yang, K.; Li, Y.L. Efficient method for the synthesis of 2-(3-arylbenzo[f]quinolin-2-yl)ethanol derivatives through an unusual ring-opening of THF-involved reaction. Tetrahedron Lett., 2011, 52, 612-614.
[237]
Shi, D.Q.; Yang, F.; Ni, S.N. A facile synthesis of furo [3,4-e] pyrazolo [3,4-b]pyridine-5(7H)-one derivatives via three-component reaction in ionic liquid without any catalyst. J. Heterocycl. Chem., 2009, 46, 469-476.
[238]
Bhargava, G.; Mohan, C.; Mahajan, M.P. Lewis acid promoted imino Diels–Alder reactions of 5-dienyl pyrimidinones with N-aryl/naphthyl imines: synthesis of novel quinoline/benzoquinoline derivatives. Tetrahedron, 2008, 64, 3017-3024.
[239]
Ji, S.J.; Ni, S.N.; Yang, F.; Shi, J.W.; Dou, G.L.; Li, X.Y.; Wang, X.S.; Shi, D.Q. An Efficient synthesis of pyrimido [4,5-b] quinoline and indeno[2′,1′:5,6]pyrido [2,3-d]pyrimidine derivatives via multicomponent reactions in ionic liquid. J. Heterocycl. Chem., 2008, 45, 693-702.
[240]
Janardhan, B.; Rajitha, B.; Crooks, P.A. Poly(4-vinyl pyridinium)hydrogen sulfate: An efficient heterogeneous catalyst for the one-pot synthesis of polyhydroquinolines via unsymmetrical Hantzsch reaction in aqueous medium. J. Saudi Chem. Soc., 2014, 18, 722-727.
[241]
Janardhan, B.; Rajitha, B.; Crooks, P.A. Poly(4-vinylpyridinium)hydrogen sulfate: An efficient and recyclable Bronsted acid catalyst for the synthesis of fused 3,4-dihydropyrimidin-2(1H)-ones and thiones. J. Saudi Chem. Soc., 2016, 20, S221-S226.
[242]
Khaligh, N.G.; Mihankhah, T. Poly(4-vinylpyridinium) hydrogen sulfate catalyzed synthesis of 12-aryl-12-hydro-5H-benzo[g]indeno [2,1-b]quinoline-6,11,13-trione derivatives. Res. Chem. Intermed., 2015, 41, 4569-4579.
[243]
To, Q.H.; Lee, Y.R.; Kim, S.H. Efficient one-pot synthesis of acridinediones by indium (III) triflate-catalyzed reactions of β-enaminones, aldehydes, and cyclic 1,3-dicarbonyls. Bull. Korean Chem. Soc., 2012, 33, 1170-1176.
[244]
Wang, X.S.; Zhang, M.M.; Jiang, H.; Yao, C.S.; Tu, S.J. Three-component green synthesis of N-arylquinoline derivatives in ionic liquid [Bmim+][BF4]: reactions of arylaldehyde, 3-arylamino-5,5-dimethylcyclohex-2-enone, and active methylene compounds. Tetrahedron, 2007, 63, 4439-4449.
[245]
Kumar, A.; Maurya, R.A. Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron, 2007, 63, 1946-1952.
[246]
Tu, S.J.; Jiang, B.; Zhang, J.Y.; Jia, R.H.; Zhang, Y.; Yao, C.S. Efficient and direct synthesis of poly-substituted indeno [1,2-b]quinolines assisted by p-toluene sulfonic acid using high-temperature water and microwave heating via one-pot, three-component reaction. Org. Biomol. Chem., 2006, 4, 3980-3985.
[247]
Abd Hamid, S.B.; Titinchi, S.J.J.; Abbo, H.; Khaligh, N.G. One-pot multicomponent synthesis of pyrazolo [3,4-d]pyrimidine-6-one derivatives. Polycycl. Aromat. Compd., 2018, 38, 189-198.
[248]
Wang, J.; Zong, Y.; Fu, R.; Niu, Y.; Yue, G.; Quan, Z.; Wang, X.; Pan, Y. Poly(4-vinylpyridine) supported acidic ionic liquid: A novel solid catalyst for the efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones under ultrasonic irradiation. Ultrason. Sonochem., 2014, 21, 29-34.
[249]
Li, W.Y.; Zong, Y.X.; Wang, J.K.; Niu, Y.Y. Sulfonated poly(4-vinylpyridine) heteropolyacid salts: A reusable green solid catalyst for Mannich reaction. Chin. Chem. Lett., 2014, 25, 575-578.
[250]
Shirini, F.; Goli Jolodar, O. Introduction of N-sulfonic acid poly(4-vinylpyridinum) chloride as an efficient and reusable catalyst for the chemoselective 1,1-diacetate protection and deprotection of aldehydes. J. Mol. Catal. A Chem., 2012, 356, 61-69.
[251]
Shirini, F.; Khaligh, N.G.; Goli Jolodar, O. N-Sulfonic acid poly(4-vinylpyridinium) chloride: an efficient and reusable solid acid catalyst in N-Boc protection of amines. J. Iran. Chem. Soc, 2013, 10, 181-188.
[252]
Shirini, F.; Khaligh, N.G.; Jolodar, O.G. An efficient and practical synthesis of bis(indolyl)methanes catalyzed by N-sulfonic acid poly(4-vinylpyridinium) chloride. Dyes Pigm, 2013, 98, 290-296.
[253]
Shirini, F.; Abedini, M.; Pourhasan, R. N-sulfonic acid poly(4-vinylpyridinium) chloride: A novel polymeric and reusable catalyst for the preparation of xanthenes derivatives. Dyes Pigm, 2013, 99, 250-255.
[254]
Shirini, F.; Abedini, M. Pourhasan-Kisomi. R. N-Sulfonic acid poly(4-vinylpyridinium) chloride as a highly efficient and reusable catalyst for the Biginelli reaction. Chin. Chem. Lett., 2014, 25, 111-114.
[255]
Moghaddas, M.; Davoodnia, A.; Heravi, M.M.; Tavakoli-Hoseini, N. Sulfonated carbon catalyzed Biginelli reaction for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and –thiones. Chin. J. Catal., 2012, 33, 706-710.
[256]
Javad Kalbasi, R.; Massah, A.R.; Daneshvarnejad, B. Preparation and characterization of bentonite/PS-SO3H nanocomposites as an efficient acid catalyst for the Biginelli reaction. Appl. Clay Sci., 2012, 55, 1-9.
[257]
Mahdavinia, G.H.; Sepehrian, H. MCM-41 anchored sulfonic acid (MCM-41-RSO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction. Chin. Chem. Lett., 2008, 19, 1435-1439.
[258]
Narahari, R.; Reguri, B.R.; Gudaparthi, O.; Mukkanti, K. Synthesis of dihydropyrimidinones via Biginelli multi-component reaction. Tetrahedron Lett., 2012, 53, 1543-1545.
[259]
Quan, Z.J.; Da, Y.X.; Zhang, Z.; Wang, X.C. PS–PEG–SO3H as an efficient catalyst for 3,4-dihydropyrimidones via Biginelli reaction. Catal. Commun., 2009, 10, 1146-1148.
[260]
Tamaddon, F.; Moradi, S. Controllable selectivity in Biginelli and Hantzsch reactions using nano-ZnO as a structure base catalyst. J. Mol. Catal. A Chem., 2013, 370, 117-122.
[261]
Moosavi-Zarea, A.R.; Zolfigol, M.A.; Noroozizadeh, E.; Zarei, M.; Karamian, R.; Asadbegy, M. Synthesis and characterization of acetic acid functionalized poly(4-vinylpyridinium) salt as new catalyst for the synthesis ofspiropyran derivatives and their biological activity. J. Mol. Catal. Chem., 2016, 425, 217-228.
[262]
Kiasat, A.R.; Mouradzadegun, A.; Saghanezhad, S.J. Poly (4‐vinylpyridinium butane sulfonic acid) hydrogen sulfate: An efficient, heterogeneous poly (ionic liquid), solid acid catalyst for the one‐pot preparation of 1‐amidoalkyl‐2‐naphthols and substituted quinolines under solvent‐free conditions. Chin. J. Catal., 2013, 34, 1861-1868.
[263]
Khaligh, N.G. Preparation, characterization and use of poly(4-vinylpyridinium) perchlorate as a new, efficient, and versatile solid phase catalyst for acetylation of alcohols, phenols and amines. J. Mol. Catal. A Chem., 2012, 363-364, 90-100.
[264]
Procopiou, P.A.; Baugh, S.P.D.; Flack, S.S.; Inglis, G.G.A. An extremely powerful acylation reaction of alcohols with acid anhydrides catalyzed by trimethylsilyl trifluoromethanesulfonate. J. Org. Chem., 1998, 63, 2342-2347.
[265]
Chakraborti, A.K.; Gulhane, R. Indium (III) chloride as a new, highly efficient, and versatile catalyst for acylation of phenols, thiols, alcohols, and amines. Tetrahedron Lett., 2003, 44, 6749-6753.
[266]
Moghadama, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Abdolmanaf Taghavi, S. Highly efficient and selective acetylation of alcohols and phenols with acetic anhydride catalyzed by a high-valent tin(IV) porphyrin, Sn(TPP)(BF4)2. J. Mol. Catal. A Chem., 2007, 274, 217-223.
[267]
Parac-Vogt, T.N.; Deleersnyder, K.; Binnemans, K. Lanthanide(III) Tosylates as new acylation catalysts. Eur. J. Org. Chem., 2005, 1810-1815.
[268]
Khaligh, N.G.; Shirini, F. Introduction of poly(4-vinylpyridinium) perchlorate as a new, efficient, and versatile solid acid catalyst for one-pot synthesis of substituted coumarins under ultrasonic irradiation. Ultrason. Sonochem., 2013, 20, 26-31.
[269]
Khaligh, N.G. Poly(4‐vinylpyridinium) perchlorate as an efficient solid acid catalyst for the chemoselective preparation of 1,1‐diacetates from aldehydes under solvent‐free conditions. Chin. J. Catal., 2014, 35, 329-334.
[270]
Shirini, F.; Esmaeeli‐Ranjbar, S.; Seddighi, M. Poly(4‐vinylpyridinium) perchlorate as an efficient and recyclable catalyst for the synthesis of biscoumarins and bisindoles. Chin. J. Catal., 2014, 35, 1017-1023.
[271]
Kocienski, P.J. Protecting Groups, 3rd ed; Georg Thieme Verlag: Stuttgart, 2004.
[272]
Sartori, G.; Ballani, R.; Bigi, F.; Bosica, G.; Maggi, R.; Right, P. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem. Rev., 2004, 104, 199-250.
[273]
Khaligh, N.G.; Hazarkhani, H. The chemoselective N-Boc protection of amines in the presence of solid-supported perchloric acid as an efficient and reusable solid acid. Monatsh. Chem., 2014, 145, 1975-1980.
[274]
Khaligh, N.G. Synthesis of xanthene derivatives in the presence of poly(4-vinylpyridinium) perchlorate as a solid acid under grinding and solvent-free conditions. Polycycl. Aromat. Compd., 2014, 34, 493-503.
[275]
Khaligh, N.G. Ghasem‐Abadi. P.G. N‐Sulfonic acid poly(4‐vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solvent‐free conditions. Chin. J. Catal., 2014, 35, 1126-1135.
[276]
Khaligh, N.G.; Shirini, F. N-Sulfonic acid poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst for one-pot synthesis of xanthene derivatives in dry media under ultrasound irradiation. Ultrason. Sonochem., 2015, 22, 397-403.
[277]
Shakibaei, G.I.; Mirzaei, P.; Bazgir, A. Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a,j]xanthene and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Appl. Catal. A Gen., 2007, 325, 188-192.
[278]
Khaligh, N.G. Investigation of the catalytic activity of poly(4-vinylpyridine) supported iodine as a new, efficient and recoverable catalyst for regioselective ring opening of epoxides. RSC Advances, 2012, 2, 3321-3327.
[279]
Khaligh, N.G.; Taraneh Mihankhah, T.; Johan, M.R. Efficient chemical fixation of CO2 into cyclic carbonates using poly(4-vinylpyridine) supported iodine as an eco-friendly and reusable heterogeneous catalyst. Heteroatom Chem., 2018, 29, e21418.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy