Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Antioxidant Properties of Synthesis Nanometallic Pd-Ni@2- Mercaptoethanol as Effective Catalyst for Suzuki-Miyaura Reactions

Author(s): Khemais Said*, Ali Mesni and Ridha B. Salem

Volume 17, Issue 1, 2020

Page: [36 - 45] Pages: 10

DOI: 10.2174/1570178616666190319160151

Price: $65

Abstract

The palladium-catalyzed Suzuki coupling reaction is one of the most efficient strategies for constructing a carbon-carbon bond. In recent years, bimetallic catalysts have become candidates for the Suzuki coupling reaction. In this work, Pd-Ni@2-Mercaptoethanol nanoparticles were synthesized for the Suzuki-Miyaura cross-coupling of arylboronic acids with aryl bromides, in the N,Ndimethylformamide/ water mixture catalyzed by Pd-Ni: A simple and efficient reaction performed in a solvent, without a ligand, and in open air. We found that the Suzuki-Miyaura reactions are remarkably fast (5 min), with high yields and the products are highly pure. The Pd-Ni@2-Mercaptoetanol nanoparticles have a narrow size distribution with a mean crystallite size of 10 nm. Radical scavenging activities of the complexes have been evaluated by using DPPH, DMPD+ and ABTS+ assays. IC50 values (µg/ml) of the complexes and standards on DPPH, DMPD+ and ABTS+ respectively following the sequences.

Keywords: Nanoparticles, Suzuki C-C coupling, ROS scavenging activities, ultrasound, arylboronic acids, biaryls.

Graphical Abstract
[1]
Rewets, M.T.; Westermann, E. Angew. Chem. Int. Ed., 2000, 39, 165.
[2]
Rocaboy, C.; Gladysz, J.A. New J. Chem., 2003, 27, 39.
[3]
Rahim, E.H.; Kamounah, F.S.; Frederiksen, J.; Christensen, J.B. Nano Lett., 2001, 1, 499-501.
[4]
Xia, J.; Fu, Y.; He, G.; Sun, X.; Wang, X. Appl. Catal. B Environmental, 2017, 200, 39-46.
[5]
Cozzi, F.; Cinquini, M.; Annuziata, R.; Siegel, J.S. J. Am. Chem. Soc., 1993, 115, 5330-5331.
[6]
Liu, Q.; Zheng, T.; Wang, P.; Jiang, J.P.; Li, N. Chem. Eng. J., 2010, 157, 348-356.
[7]
Khan, M.; Albalawi, G.H.; Shaik, M.R.; Khan, M.; Adil, S.F.; Kuniyil, M.; Alkhathlan, H.Z. Al- Warthan, A.; Siddiqui. M.R.H. J. Saudi Chem. Soc., 2017, 21, 450-457.
[8]
Gholinejad, M.; Bahrami, M.; Nájer, C. Molecular Catalysis, 2017, 433, 12-19.
[9]
Son, S.U.; Jang, Y.; Park, J.; Na, H.B.; Park, H.M.; Yun, H.J.; Lee, J.; Hyeon, T. J. Am. Chem. Soc., 2004, 126, 5026-5027.
[10]
Nasrollahzadeh, M.; Azarian, A.; Ehsani, A.; Sajadi, S.M.; Babaei, F. Mater. Res. Bull., 2014, 55, 168.
[11]
Kim, J.H.; Lee, D.H.; Jun, B.H.; Lee, Y.S. Tetrahedron Lett., 2007, 48, 7079.
[12]
Beletskaya, P.; Khokhlov, A.R.; Tarasenko, E.A.; Tyurin, V.S. J. Organomet. Chem., 2007, 692, 4402.
[13]
Tzschucke, C.C.; Andrushko, V.; Bannwarth, W. Eur. J. of Org. Chem., 2005, 24, 5248.
[14]
Drelinkiewicz, A.; Knapik, A.; Waksmundzka-Góra, A.; Bukowska, A.; Bukowski, W.; Oworól, J. React. Funct. Polym., 2008, 68, 1059.
[15]
Trost, B.M. Science, 1991, 254, 1471.
[16]
Tsuji, J. Wiley: New York, NY, USA; , 1995.
[17]
Yin, L. Liebscher. J. Chem. Rev., 2007, 107, 133-173.
[18]
Littke, A.F.; Fu, G.C. Angew. Chem. Int. Ed., 2002, 41, 4176.
[19]
Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Angew. Chem. Int. Ed., 2005, 44, 4442.
[20]
Malan, F.P.; Singleton, E.; van Rooyen, P.H.; Landman, M. J. Organomet. Chem., 2016, 813, 7-14.
[21]
Saeed, A.; Haroon, M.; Muhammad, F.; Larik, F.A.; Hesham, E.S.; Channar, P.A. J. Organomet. Chem., 2017, 834, 88-103.
[22]
Chemler, S.R. Beilstein J. Org. Chem., 2015, 11, 2253.
[23]
Nicolaou, K.C.; Dai, W.M. Chem. Int. Ed. Engl., 1991, 30, 1387.
[24]
Yoshimura, F.; Kawata, S.; Hirama, M. Tetrahedron Lett., 1999, 40, 8281. Toyota, M.; Komori, C.; Ihara, M. A. J. Org. Chem., 2000, 65, 7110.
[25]
Paterson, I.M.; Davies, R.D.; Marquez, R. Chem. Int. Ed., 2001, 40, 603.
[26]
Otsu, T.; Yoshida, M. Rapid Communications, 1982, 3, 127.
[27]
Wang, J.S.; Matyjaszewski, K. J. of the American Chem. Soc., 1995, 117, 5614.
[28]
Chiefari, J.; Chong, Y.K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, A.R.T.; Meijs, G.F.; Moad, C.L.; Moad, G.; Rizzardo, E.; Thang, S.H. Macromolecules, 1998, 31, 559.
[29]
Geng, L.; Li, Y.; Qi, Z.; Fan, H.; Zhou, Z.; Chen, R.; Wang, Y.; Huang, N. J. Catal. Commun., 2016, 82, 24-28.
[30]
Garrett, C.E.; Prasad, K. Adv. Synth. Catal., 2004, 346, 889.
[31]
Khakiani, B.A.; Pourshamsian, K.; Veisi, H. Appl. Organomet. Chem., 2015, 29, 259-265.
[32]
Elazab, H.A.; Siamaki, A.R.; Moussa, S.; Gupton, B.F.; El-Shall, M. S. Appl. Catal., A, 2015, 491, 58-69.
[33]
Hong, M.C.; Ahn, H.; Choi, M.C.; Lee, Y.; Kim, J.; Rhee, H. Appl. Organomet. Chem., 2014, 28, 156-161.
[34]
Malan, F.P. ingleton, E.S.; van Rooyen, P.H.; Landman, M. J. Organomet. Chem., 2016, 813, 817.
[35]
Saïd, K.; Moussaoui, Y.; Kammoune, M.; Ben Salem, R. Ultrason. Sonochem., 2011, 18, 23-27.
[36]
Said, K.; Ben Salem, R. Chem. Eng. Sci., 2016, 6, 111-123.
[37]
Gao, X.; Lu, P.; Ma, Y. Polymer, 2014, 55, 3083-3086.
[38]
Cintas, P.; Tagliapietra, S.; Caporaso, M.; Tabasso, S.; Cravotto, G. Ultrason. Sonochem., 2015, 25, 8.
[39]
Xing, T.; Zhang, Z.; Da, Y.X.; Quan, Z.J.; Wang, X.C. Tetrahedron Lett., 2015, 56, 6495-6498.
[40]
Ramírez-Rave, S.; Morales-Morales, D.; Grévy, J-M. Inorg. Chim. Acta, 2017, 462, 249-255.
[41]
Suzuki, A. Acc. Chem. Res., 1982, 15, 178.
[42]
Suzuki, A. Angew. Chem. Int. Ed., 2011, 50, 6722-6764.
[43]
Gholinejad, M.; Seyedhamzeh, M.; Razeghi, M.; Nájera, C.; Kompany-Zareh, M. ChemCatChem, 2016, 8, 441.
[44]
Lebaschi, S.; Hekmati, M.; Veisi, H. J. Colloid Interface Sci., 2017, 485, 223-231.
[45]
Peramaiyan, R.; Natarajan, N.; Thamaraiselvan, R.; Rajendran, P.; Edwinoliver, N.G.; Uppalapati, L.; Jacob, G.; Ikuo, N. Clin. Chim. Acta, 2014, 436, 332-347.
[46]
Sugino, N. Anim. Sci. J., 2006, 77, 556-565.
[47]
Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B.H.M. J. of Mol. Struct., 2015, 1079, 214.
[48]
Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Akbaria, S.; Jeddib, N. RSC Advances, 2014, 4, 17060-17070.
[49]
Li, Y.; Hong, X.M.; Collard, D.M.; El-Sayed, M.A. Org. Lett., 2000, 2, 2385.
[50]
Choudary, B.M.; Madhi, S.; Chowdari, N.S.; Kantam, M.L.; Sreedhar, B. J. Am. Chem. Soc., 2002, 124, 14127-14136.
[51]
Takahashi, R.; Sato, S.; Sodesawa, T.; Nishida, H. Phys. Chem. Chem. Phys., 2002, 4, 3800-3805.
[52]
Takahashi, R.; Sato, S.; Sodesawa, T.; Kamomae, Y. Phys. Chem. Chem. Phys., 2000, 2, 1199.
[53]
Gaspari, G. Albrecht Granzow, 1970.
[54]
Dusek, M.; Petricek, V.; Palatinus, L. Acta Crystallogr., 2006, 62, 46.
[55]
Berar, J.F.; Baldinozzi, G. J. Appl. Cryst., 1993, 26, 128.
[56]
Noltingk, B.E.; Neppiras, E.A. Proceeding of the Physical Society, Section B, 1950, 63, pp. 674-685.
[57]
Pétrier, C.; Gondrexon, N.; Boldo, P. Techniques de l'ingénieur, 2008. 1-14.
[58]
Suslick, K.S.; Price, G.J. Mater. Sci., 1999, 29, 295-326.
[59]
Das, P.; Linert, W. Coord. Chem. Rev., 2016, 311, 1.
[60]
Mao, J.J.; Wang, D.S.; Zhao, G.F.; Jia, W.; Li, Y.D. CrystEngComm, 2013, 15, 4806-4810.
[61]
Xiang, J.; Li, P.; Chong, H.; Feng, L.; Fu, F.; Wang, Z.; Zhang, S.; Zhu, M. Nano Res., 2014, 7, 1337-1343.
[62]
Dhankhar, A.; Rai, R.K.; Tyagi, D.; Yao, X.; Singh, S.K. ChemistrySelect, 2016, 1, 3223-3227.
[63]
Wu, Y.; Wang, D.; Zhao, P.; Niu, Z.; Peng, Q.; Li, Y. Inorg. Chem., 2011, 50, 2046-2048.
[64]
Rai, R.K.; Gupta, K.; Behrens, S.; Li, J.; Xu, Q.; Singh, S.K. ChemCatChem, 2015, 7, 1806-1812.
[65]
Braca, A.; Tommasi, N.D.; Bari, L.D.; Pizza, C.; Politi, M.; Morelli, I. J. Nat. Prod., 2001, 64, 892.
[66]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yong, M.; Rice-Evas, C. Free Radic. Biol. Med., 1999, 26, 1231.
[67]
Halliwell, B.; Gutteridge, J.M.C.; Aruoma, O.I. Anal. Biochem., 1987, 165, 215.
[68]
Pulido, R.; Bravo, L.; Saura-Calixto, F. J. of Agric. and Food Chem., 2000.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy