Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Detoxification of Heterocyclic Aromatic Amines by Probiotic to Inhibit Medical Hazards

Author(s): Kianoush Khosravi-Darani*, F. Barzegar and M. Baghdadi

Volume 19, Issue 15, 2019

Page: [1196 - 1203] Pages: 8

DOI: 10.2174/1389557519666190318102201

Price: $65

Abstract

Cancer is the second leading factor of human death in the world. Long-term consumption of cooked red meat brings about various types of cancers like colorectal cancer due to the formation of Heterocyclic Aromatic Amines (HAAs) during the heating process of meat. There are various solutions for the reduction of these toxicants. The aim of this article is to describe probiotic as one of the possible strategies for bioremoval of these carcinogenic and mutagenic substances and change food to functional one as well. The mechanism of biodetoxification is binding by probiotics, which depends on some variables including the probiotic characteristics, kind and content of the mutagens, as well as some properties of media. In this article, after introducing detoxification ability of probiotics and listing of all reported probiotics in this field, the influencing variables are surveyed and finally, opportunities and problems of HAA bioremoval by probiotics are described.

Keywords: Bioremoval, cancerogenic food, decontamnation, heterocyclic aromatic amines, probiotics, hazards.

Graphical Abstract
[1]
Puangsombat, K.; Gadgil, P.; Houser, T.A.; Hunt, M.C.; Smith, J.S. Heterocyclic amine content in commercial ready to eat meat products. Meat Sci., 2011, 88(2), 227-233.
[2]
Lippi, G.; Mattiuzzi, C.; Cervellin, G. Meat consumption and cancer risk: A critical review of published meta-analyses. Crit. Rev. Oncol. Hematol., 2016, 97(Supplement. C), 1-14.
[3]
Liao, G.Z.; Wang, G.Y.; Xu, X.L.; Zhou, G.H. Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast. Meat Sci., 2010, 85(1), 149-154.
[4]
Zaidi, R.; Kumar, S.; Rawat, P.R. Rapid detection and quantification of dietary mutagens in food using mass spectrometry and ultra-performance liquid chromatography. Food Chem., 2012, 135(4), 2897-2903.
[5]
Elmer, P.J.; Obarzanek, E.; Vollmer, W.M.; Simons-Morton, D.; Stevens, V.J.; Young, D.R.; Lin, P.H.; Champagne, C.; Harsha, D.W.; Svetkey, L.P.; Ard, J.; Brantley, P.; Proschan, M.A.; Erlinger, T.P.; Appel, L.J. Group., P.C.R. Effects of comprehensive lifestyle modification on diet, weight, physical fitness, and blood pressure control: 18-month results of a randomized trial. Ann. Intern. Med., 2006, 144(7), 485-495.
[6]
Wolk, A. Potential health hazards of eating red meat. J. Intern. Med., 2017, 281(2), 106-122.
[7]
Ohgaki, H.; Hasegawa, H.; Kato, T.; Suenaga, M.; Ubukata, M.; Sato, S.; Takayama, S.; Sugimura, T. Carcinogenicity in mice and rats of heterocyclic amines in cooked foods. Environ. Health Perspect., 1986, 67, 129-134.
[8]
Faghfoori, Z.; Pourghassem Gargari, B.; Saber Gharamaleki, A.; Bagherpour, H.; Yari Khosroushahi, A. Cellular and molecular mechanisms of probiotics effects on colorectal cancer. J. Funct. Foods, 2015, 18(Part A), 463-472.
[9]
Gnagnarella, P.; Caini, S.; Maisonneuve, P.; Gandini, S. Carcinogenicity of high consumption of meat and lung cancer risk among non-smokers: A comprehensive meta-analysis. Nutr. Cancer, 2018, 70, 1-13.
[10]
Boskovic, M.; Baltic, M. Association between red meat consumption and cancer risk. Scient. J. Meat Technology., 2016, 57(2), 81-88.
[11]
Chen, J.; He, Z.; Qin, F.; Chen, J.; Zeng, M. Formation of free and protein-bound heterocyclic amines in roast beef patties assessed by UPLC-MS/MS. J. Agric. Food Chem., 2017, 65(22), 4493-4499.
[12]
Gross, G.A.; Turesky, R.J.; Fay, L.B.; Stillwell, W.G.; Skipper, P.L.; Tannenbaum, S.R. Heterocyclic aromatic amine formation in grilled bacon, beef and fish and in grill scrapings. Carcinogenesis, 1993, 14(11), 2313-2318.
[13]
Cheng, K.W.; Chen, F.; Wang, M. Heterocyclic amines: Chemistry and health. Mol. Nutr. Food Res., 2006, 50(12), 1150-1170.
[14]
Pezdirc, M.; Žegura, B.; Filipič, M. Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food Chem. Toxicol., 2013, 59(Suppl. C), 386-394.
[15]
Shin, A.; Shrubsole, M.J.; Ness, R.M.; Wu, H.; Sinha, R.; Smalley, W.E.; Shyr, Y.; Zheng, W. Meat and meat-mutagen intake, doneness preference and the risk of colorectal polyps: The tennessee colorectal polyp study. Int. J. Cancer, 2007, 121(1), 136-142.
[16]
International agency for research on cancer. IARC monographs on the evaluation of carcinogenic risks to humans., 2002.
[17]
Gibis, M. Heterocyclic aromatic amines in cooked meat products: Causes, formation, occurrence, and risk assessment. Compr. Rev. Food Sci. Food Saf., 2016, 15(2), 269-302.
[18]
Oz, F.; Kotan, G. Effects of different cooking methods and fat levels on the formation of heterocyclic aromatic amines in various fishes. Food Control, 2016, 67(Supplement. C), 216-224.
[19]
Szterk, A. Heterocyclic aromatic amines in grilled beef: The influence of free amino acids, nitrogenous bases, nucleosides, protein and glucose on HAAs content. J. Food Compos. Anal., 2015, 40(Supplement. C), 39-46.
[20]
Knize, M.G.; Dolbeare, F.A.; Carroll, K.L.; Moore, D.H.; Felton, J.S. Effect of cooking time and temperature on the heterocyclic amine content of fried beef patties. Food Chem. Toxicol., 1994, 32(7), 595-603.
[21]
Tsuda, H.; Hara, K.; Miyamoto, T. Binding of mutagens to exopolysaccharide produced by lactobacillus plantarum mutant strain 301102S. J. Dairy Sci., 2008, 91(8), 2960-2966.
[22]
Zoghi, A.; Khosravi, K.; Sohrabvandi, S. Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem., 2014, 14(1), 84-98.
[23]
Limdi, J.K.; O’Neill, C.; McLaughlin, J. Do probiotics have a therapeutic role in gastroenterology? World J. Gastroenterol., 2006, 12(34), 5447-5457.
[24]
Liévin-Le Moal, V.; Servin, A.L. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: From probiotics to gastrointestinal anti-infectious bio therapeutic agents. Clin. Microbiol. Rev., 2014, 27(2), 167-199.
[25]
Masood, M.I.; Qadir, M.I.; Shirazi, J.H.; Khan, I.U. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol., 2011, 37(1), 91-98.
[26]
Roberfroid, M.B. Prebiotics and probiotics: Are they functional foods? Am. J. Clin. Nutr., 2000, 71(6), 1682s-1687s.
[27]
Gilliland, S.E. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Lett., 1990, 87(1), 175-188.
[28]
Abbas Ahmadi, M.; Tajabadi Ebrahimi, M.; Mehrabian, S.; Tafvizi, F.; Bahrami, H.; Dameshghian, M. Antimutagenic and anticancer effects of lactic acid bacteria isolated from tarhana through ames test and phylogenetic analysis by 16S rDNA. Nutr. Cancer, 2014, 66(8), 1406-1413.
[29]
Butel, M.J. Probiotics, gut microbiota and health. Médecine et Maladies Infectieuses.., 2014, 44(1), 1-8.
[30]
Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S. Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem., 2014, 14(1), 84-98.
[31]
Khorshidian, N.; Yousefi, M.; Hosseini, H.; Shadnoush, M.; Mortazavian, A. Potential Anticarcinogenic Effects of Lactic Acid Bacteria and Probiotics in Detoxification of Process-Induced Food Toxicants, 2016.
[32]
Ramona, M.; Cruz, A.; Khosravi-Darani, K.; Ochratoxin, A. From safety aspects to prevention and remediation strategies. Curr. Nutr. Food Sci., 2018, 14(1), 11-16.
[33]
Zoghi, A.; Khosravi‐Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi Sayed, A. Effect of probiotics on patulin removal from synbiotic apple juice. J. Sci. Food Agric., 2016, 97(8), 2601-2609.
[34]
Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi, S.A. Survival of probiotics in symbiotic apple juice during refrigeration and subsequent exposure to simulated gastro-intestinal conditions. IRAN. J. Chem. Chem. Eng., 2018. in press
[35]
Hadiani, M.R.; Khosravi-Darani, K.; Rahimifard, N.; Younesi, H. Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Biocatal. Agric. Biotechnol., 2018, 15, 25-34.
[36]
Hadiani, M.R.; Khosravi-Darani, K.; Rahimifard, N.; Younesi, H. Biosorption of low concentrations of mercury ions from aqueous solution by Saccharomyces cerevisiae - A green technology in food industry and water treatment. Appl. Biochem. Biotechnol., 2019.
[37]
Stidl, R.; Sontag, G.; Koller, V.; Knasmüller, S. Binding of heterocyclic aromatic amines by lactic acid bacteria: Results of a comprehensive screening trial. Mol. Nutr. Food Res., 2008, 52(3), 322-329.
[38]
Gibis, M.; Weiss, J. Inhibitory effect of cellulose fibers on the formation of heterocyclic aromatic amines in grilled beef patties. Food Chem., 2017, 229(Supplement. C), 828-836.
[39]
Natale, D.; Gibis, M.; Rodriguez-Estrada, M.T.; Weiss, J. Inhibitory effect of liposomal solutions of grape seed extract on the formation of heterocyclic aromatic amines. J. Agric. Food Chem., 2014, 62(1), 279-287.
[40]
Keşkekoğlu, H.; Üren, A. Inhibitory effects of pomegranate seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs after cooking by four different methods. Meat Sci., 2014, 96(4), 1446-1451.
[41]
Vitaglione, P.; Monti, S.; Ambrosino, P.; Skog, K.; Fogliano, V. Carotenoids from tomatoes inhibit heterocyclic amine formation. Eur. Food Res. Technol., 2002, 215(2), 108-113.
[42]
Damašius, J.; Venskutonis, P.R.; Ferracane, R.; Fogliano, V. Assessment of the influence of some spice extracts on the formation of heterocyclic amines in meat. Food Chem., 2011, 126(1), 149-156.
[43]
Zeng, M.; Wang, J.; Zhang, M.; Chen, J.; He, Z.; Qin, F.; Xu, Z.; Cao, D.; Chen, J. Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties. Food Chem., 2018, 239(Supplement. C), 111-118.
[44]
Oz, F.; Kaya, M. The inhibitory effect of black pepper on formation of heterocyclic aromatic amines in high-fat meatball. Food Control, 2011, 22(3), 596-600.
[45]
Oz, F.; Kaya, M. The inhibitory effect of red pepper on heterocyclic aromatic amines in fried beef longissimus dorsi muscle. J. Food Process. Preserv., 2011, 35(6), 806-812.
[46]
Quelhas, I.; Petisca, C.; Viegas, O.; Melo, A.; Pinho, O.; Ferreira, I.M.P.L.V.O. Effect of green tea marinades on the formation of heterocyclic aromatic amines and sensory quality of pan-fried beef. Food Chem., 2010, 122(1), 98-104.
[47]
Gibis, M.; Weiss, J. Antioxidant capacity and inhibitory effect of grape seed and rosemary extract in marinades on the formation of heterocyclic amines in fried beef patties. Food Chem., 2012, 134(2), 766-774.
[48]
Gibis, M.; Weiss, J. Inhibitory effect of marinades with hibiscus extract on formation of heterocyclic aromatic amines and sensory quality of fried beef patties. Meat Sci., 2010, 85(4), 735-742.
[49]
Rounds, L.; Havens, C.M.; Feinstein, Y.; Friedman, M.; Ravishankar, S. Concentration-dependent inhibition of Escherichia coli O157:H7 and heterocyclic amines in heated ground beef patties by apple and olive extracts, onion powder and clove bud oil. Meat Sci., 2013, 94(4), 461-467.
[50]
Lewandowska, A.; Przychodzeń, W.; Kusznierewicz, B.; Kołodziejski, D.; Namieśnik, J.; Bartoszek, A. Isothiocyanates may chemically detoxify mutagenic amines formed in heat processed meat. Food Chem., 2014, 157(Supplement. C), 105-110.
[51]
Tengilimoglu-Metin, M.M.; Hamzalioglu, A.; Gokmen, V.; Kizil, M. Inhibitory effect of hawthorn extract on heterocyclic aromatic amine formation in beef and chicken breast meat. Food Res. Int., 2017, 99(Part 1), 586-595.
[52]
Nowak, A.; Libudzisz, Z. Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolize heterocyclic aromatic amines in vitro. Eur. J. Nutr., 2009, 48(7), 419-427.
[53]
Nowak, A.; Czyżowska, A.; Stańczyk, M. Protective activity of probiotic bacteria against 2-amino-3-methyl-3H-imidazo[4,5-f] quinoline (IQ) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b] pyridine (PhIP) – An in vitro study. Food Addit. Contam. Part A., 2015, 32(11), 1927-1938.
[54]
Burns, A.J.; Rowland, I.R. Anti-carcinogenicity of probiotics and prebiotics. Curr. Issues Intest. Microbiol., 2000, 1(1), 13-24.
[55]
Commane, D.; Hughes, R.; Shortt, C.; Rowland, I. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat. Res., 2005, 591(1-2), 276-289.
[56]
Lankaputhra, W.E.; Shah, N.P. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res., 1998, 397(2), 169-182.
[57]
Sinha, R.; Rothman, N.; Salmon, C.P.; Knize, M.G.; Brown, E.D.; Swanson, C.A.; Rhodes, D.; Rossi, S.; Felton, J.S.; Levander, O.A. Heterocyclic amine content in beef cooked by different methods to varying degrees of doneness and gravy made from meat drippings. Food Chem. Toxicol., 1998, 36(4), 279-287.
[58]
Layton, D.W.; Bogen, K.T.; Knize, M.G.; Hatch, F.T.; Johnson, V.M.; Felton, J.S. Cancer risk of heterocyclic amines in cooked foods: An analysis and implications for research. Carcinogenesis, 1995, 16(1), 39-52.
[59]
Cummings, J.H.; Antoine, J-M.; Azpiroz, F.; Bourdet-Sicard, R.; Brandtzaeg, P.; Calder, P.C.; Gibson, G.R.; Guarner, F.; Isolauri, E.; Pannemans, D.; Shortt, C.; Tuijtelaars, S.; Watzl, B. PASSCLAIM1-Gut health and immunity. Eur. J. Nutr., 2004, 43(2), 118-173.
[60]
Gutiérrez Junquera, C.; Marco, A.; Nogales, A.; Tebar, R. Total and Segmental Colonic Transit Time and Anorectal Manometry in Children with Chronic Idiopathic Constipation., 2002.
[61]
Sreekumar, O.; Hosono, A. The heterocyclic amine binding receptors of Lactobacillus gasseri cells. Mutat. Res. Fundament. Mol. Mechan. Mutagen., 1998, 421(1), 65-72.
[62]
Terahara, M.; Meguro, S.; Kaneko, T. Effects of Lactic acid bacteria on binding and absorption of mutagenic heterocyclic amines. Biosci. Biotechnol. Biochem., 1998, 62(2), 197-200.
[63]
Orrhage, K.; Sillerström, E.; Gustafsson, J.Å.; Nord, C.E.; Rafter, J. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat. Res. Fundament. Mol. Mechan. Mutagen., 1994, 311(2), 239-248.
[64]
Bolognani, F.; Rumney, C.J.; Rowland, I.R. Influence of carcinogen binding by lactic acid-producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens. Food Chem. Toxicol., 1997, 35(6), 535-545.
[65]
Xue , Bin. Z.; Ohta, Y. Antimutagenicity of cell fractions of microorganisms on potent mutagenic pyrolysates. Mutat. Res. Genet. Toxicol., 1993, 298(4), 247-253.
[66]
Lankaputhra, W.E.V.; Shah, N.P. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res. Fundament. Mol. Mechan. Mutagen., 1998, 397(2), 169-182.
[67]
Ambalam, P.; Dave, J.M.; Nair, B.M.; Vyas, B.R.M. In vitro Mutagen binding and antimutagenic activity of human Lactobacillus rhamnosus 231. Anaerobe, 2011, 17(5), 217-222.
[68]
Sreekumar, O.; Hosono, A. Antimutagenicity and the influence of physical factors in binding Lactobacillus gasseri and bifidobacterium longum cells to amino acid pyrolysates. J. Dairy Sci., 1998, 81(6), 1508-1516.
[69]
Hosono, O.S.A. The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultured milk against some heterocyclic amines. Cancer. J. Microbiol., 1998, 44(11), 1029-1036.
[70]
Duangjitcharoen, Y.; Kantachote, D.; Prasitpuripreecha, C.; Peerajan, S.; Sirilun, S. Selection and characterization of probiotic lactic acid bacteria with heterocyclic amine binding and nitrosamine degradation properties., 2014.
[71]
Beer, F.; Urbat, F.; Steck, J.; Huch, M.; Bunzel, D.; Bunzel, M.; Kulling, S.E. Metabolism of foodborne heterocyclic aromatic amines by lactobacillus reuteri DSM 20016. J. Agric. Food Chem., 2017, 65(32), 6797-6811.
[72]
Dominici, L.; Villarini, M.; Trotta, F.; Federici, E.; Cenci, G.; Moretti, M. Protective effects of probiotic Lactobacillus rhamnosus IMC501 in mice treated with PhIP. J. Microbiol. Biotechnol., 2014, 24(3), 371-378.
[73]
Reddy, B.S.; Rivenson, A. Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen. Cancer Res., 1993, 53(17), 3914.
[74]
Raman, M.; Ambalam, P.; Kondepudi, K.K.; Pithva, S.; Kothari, C.; Patel, A.T.; Purama, R.K.; Dave, J.M.; Vyas, B.R.M. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes, 2013, 4(3), 181-192.
[75]
Bin , Zhang X.; Ohta, Y. Binding of Mutagens by Fractions of the Cell Wall Skeleton of Lactic Acid Bacteria on Mutagens. 1991.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy