Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Applications of Green Chemistry Approaches in Environmental Analysis

Author(s): Aslı Erdem Yayayürük* and Onur Yayayürük

Volume 15, Issue 7, 2019

Page: [745 - 758] Pages: 14

DOI: 10.2174/1573411015666190314154632

Price: $65

Abstract

Background: Green chemistry is the application of methodologies and techniques to reduce the use of hazardous substances, minimize waste generation and apply benign and cheap applications.

Methods: In this article, the following issues were considered: greener solvents and reagents, miniaturization of analytical instrumentation, reagent-free methodologies, greening with automation, greener sample preparation methods, and greener detection systems. Moreover, the tables along with the investigated topics including environmental analysis were included. The future aspects and the challenges in green analytical chemistry were also discussed.

Results: The prevention of waste generation, atomic economy, use of less hazardous materials for chemical synthesis and design, use of safer solvents, auxiliaries and renewable raw materials, reduction of unnecessary derivatization, design degradation products, prevention of accidents and development of real-time analytical methods are important for the development of greener methodologies.

Conclusion: Efforts should also be given for the evaluation of novel solid phases, new solvents, and sustainable reagents to reduce the risks associated with the environment. Moreover, greener methodologies enable energy efficient, safe and faster that reduce the use of reagents, solvents and preservatives which are hazardous to both environment and human health.

Keywords: Environment, green analytical chemistry, green sample preparation, greener detection, miniaturization, reagent-free methodology.

Graphical Abstract
[1]
Yayayürük, A.E.; Yayayürük, O.; Koçak, C.C.; Koçak, S. Uptake characteristics of Pb(II), Cu(II) and Zn(II) by natural magnetite: Application to river samples. J. Environ. Prot. Ecol., 2017, 18(2), 433-441.
[2]
Wei, C.; Zhang, F.; Hu, Y.; Feng, C.; Wu, H. Ozonation in water treatment: The generation, basic properties of ozone and its practical application. Rev. Chem. Eng., 2016, 33, 49-89.
[3]
Pandya, M.T. Treatment of industrial wastewater using photooxidation and bioaugmentation technology. Water Sci. Technol., 2007, 56(7), 117-124.
[4]
Mitra, S. Sample Preparation Techniques in Analytical Chemistry; Wiley & Sons: New York, 2003.
[5]
Anastas, P.T. Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem., 1999, 29, 167-175.
[6]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
[7]
Keith, L.H.; Gron, L.U.; Young, J.L. Green analytical methodologies. Chem. Rev., 2007, 107, 2695-2708.
[8]
Lavilla, I.; Romero, V.; Costas, I.; Bendicho, C. Greener derivatization in analytical chemistry. Trends Analyt. Chem., 2014, 61, 1-10.
[9]
Laird, T. Green chemistry is good process chemistry. Org. Process Res. Dev., 2012, 16, 1-2.
[10]
Li, Q.; Yan, Y.N.; Wang, X.W.; Gong, B.W.; Tang, X.B.; Shi, J.J.; Xu, H.E.; Yi, W. Water as a green solvent for efficient synthesis of isocoumarins through microwave-accelerated and Rh/Cu-catalyzed C-H/O-H bond functionalization. RSC Advances, 2013, 3, 23402-23408.
[11]
Filly, A.; Fabiano-Tixier, A.S.; Louis, C.; Fernandez, X.; Chemat, F. Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. C. R. Chim., 2016, 19, 707-717.
[12]
Pace, V.; Hoyos, P.; Castoldi, L.; De Maria, P.D.; Alcantara, A.R. 2- Methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry. ChemSusChem, 2012, 5, 1369-1379.
[13]
Antonucci, V.; Coleman, J.; Ferry, J.B.; Johnson, N.; Mathe, M.; Scott, J.P.; Xu, J. Toxicological assessment of 2-methyltetrahydrofuran and cyclopentyl methyl ether in support of their use in pharmaceutical chemical process development. Org. Process Res. Dev., 2011, 15, 939-941.
[14]
De Jesus, S.S.; Ferreira, G.F.; Fregolente, L.V.; Filho, R.M. Laboratory extraction of microalgal lipids using sugarcane bagasse derived green solvents. Algal Res., 2018, 35, 292-300.
[15]
De Jesus, S.S.; Ferreira, G.F.; Maciel, M.R.W.; Filho, R.M. Biodiesel purification by column chromatography and liquid-liquid extraction using green solvent. Fuel, 2019, 235, 1123-1130.
[16]
Erkey, C. Supercritical carbon dioxide extraction of metals from aqueous solutions: a review. J. Supercrit. Fluids, 2000, 17, 259-287.
[17]
Albarelli, J.Q.; Rabelo, R.B.; Santos, D.T.; Beppu, M.M.; Meireles, M.A.A. Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal. J. Supercrit. Fluids, 2011, 58(3), 343-351.
[18]
Tavakoli, O.; Yoshida, H. Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environ. Sci. Technol., 2005, 39(7), 2357-2363.
[19]
Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Green analytical chemistry - theory and practice. Chem. Soc. Rev., 2010, 39, 2869-2878.
[20]
Ventura, S.P.; Marques, C.S.; Rosatella, A.A.; Afonso, C.A.; Gonçalves, F.; Coutinh, J.A. Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicol. Environ. Saf., 2012, 76, 62-68.
[21]
Farré, M.; Pérez, S.; Gonçalves, C.; Alpendurada, M.F.; Barceló, D. Green analytical chemistry in the determination of organic pollutants in the aquatic environment. Trends Analyt. Chem., 2010, 29, 1347-1362.
[22]
Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Analyt. Chem., 2013, 50, 78-84.
[23]
Vilkner, T.; Janasek, D.; Manz, A. Micro total analysis systems. Recent developments. Anal. Chem., 2004, 76, 3373-3386.
[24]
Pujol-Vila, F.; Giménez-Gómez, P.; Santamaria, N.; Antúnez, B.; Vigués, N.; González, M.D.; Jiménez-Jorquera, C.; Mas, J.; Sacristán, J.; Muñoz-Berbel, X. Portable and miniaturized optofluidic analysis system with ambient light correction for fast in situ determination of environmental pollution. Sens. Actuators B,; , 2016, 222, pp. 55-62.
[25]
Pena-Pereira, F. From Conventional to Miniaturized Analytical Systems. In: Miniaturization Sample Prep; Pena-Pereira, F. Ed.; De Gruyter Open: Berlin, 2014.
[26]
Abdul-Majeed, W.S.; Parada, J.H.L.; Zimmerman, W.B. Optimization of a miniaturized DBD plasma chip for mercury detection in water samples. Anal. Bioanal. Chem., 2011, 401, 2713-2722.
[27]
Yu, Y.L.; Du, Z.; Chen, M.L.; Wang, J.H. A miniature lab-on-valve atomic fluorescence spectrometer integrating a dielectric barrier discharge atomizer demonstrated for arsenic analysis. J. Anal. At. Spectrom., 2008, 23, 493-499.
[28]
Armenta, S.; Garrigues, S.; de la Guardia, M. Determination of iprodione in agrochemicals by infrared and Raman spectrometry. Anal. Bioanal. Chem., 2007, 387(8), 2887-2894.
[29]
Vidigal, S.S.M.P.; Rangel, A.O.S.S. A reagentless flow injection system for the quantification of ethanol in beverages based on the schlieren effect measurement. Microchem. J., 2015, 121, 107-111.
[30]
Beyki, M.H.; Alijani, H.; Fazli, Y. Solvent free synthesized MnFe2O4@polyamid resin as a novel green nanohybrid for fast removing Congo red. J. Mol. Liq., 2016, 216, 6-11.
[31]
Hajslova, J.; Cajka, T.; Vaclavik, L. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. Trends Analyt. Chem., 2011, 30(2), 204-218.
[32]
Gross, J.H. Direct analysis in real time-a critical review on DART-MS. Anal. Bioanal. Chem., 2014, 406(1), 63-80.
[33]
Gómez-Ríos, G.A.; Gionfriddo, E.; Poole, J.; Pawliszyn, J. Ultrafast screening and quantitation of pesticides in food and environmental matrices by Solid-Phase Microextraction-Transmission Mode (SPME-TM) and Direct Analysis in Real Time (DART). Anal. Chem., 2017, 89(13), 7240-7248.
[34]
Jamroz, P.; Pohl, P.; Zyrnicki, W. An analytical performance of atmospheric pressure glow discharge generated in contact with flowing small size liquid cathode. J. Anal. At. Spectrom., 2012, 27, 1032-1037.
[35]
Pohl, P.; Jamroz, P.; Swiderski, K.; Dzimitrowicz, A.; Lesniewicz, A. Critical evaluation of recent achievements in low power glow discharge generated at atmospheric pressure between a flowing liquid cathode and a metallic anode for element analysis by optical emissionspectrometry. Trends Analyt. Chem., 2017, 88, 119-133.
[36]
Li, Y.; Zheng, C.; Ma, Q.; Wu, L.; Hu, C.; Hou, X. Sample matrix-assisted photo-induced chemical vapor generation: A reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples. J. Anal. At. Spectrom., 2006, 21, 82-85.
[37]
Sturgeon, R.E. Photochemical vapor generation: A radical approach to analyte introduction for atomic spectrometry. J. Anal. At. Spectrom., 2017, 32, 2319-2340.
[38]
Gredilla, A.; de Vallejuelo, S.F.O.; Elejoste, N.; de Diego, A.; Madariaga, J.M. Non-destructive spectroscopy combined with chemometrics as a tool for green chemical analysis of environmental samples: A review. Trends Analyt. Chem., 2016, 76, 30-39.
[39]
Becerra-Herrera, M.; Miranda, V.; Arismendi, D.; Richter, P. Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry. Talanta, 2018, 176, 551-557.
[40]
Fernández, E.; Vidal, L.; Canals, A. Zeolite/iron oxide composite as sorbent for magnetic solid-phase extraction of benzene, toluene, ethylbenzene and xylenes from water samples prior to gas chromatography-mass spectrometry. J. Chromatogr. A, 2016, 1458, 18-24.
[41]
Zare-Dorabei, R.; Ferdowsi, S.M.; Barzin, A.; Tadjarodi, A. Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,20 -dipyridylamine: Central composite design optimization. Ultrason. Sonochem., 2016, 32, 265-276.
[42]
Zhang, J.; Wei, Y.; Li, H.; Zeng, E.Y.; You, J. Application of Box-Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances. Talanta, 2017, 170, 392-398.
[43]
Armenta, S.; Garrigues, S.; de la Guardia, M. Green analytical chemistry. Trends Analyt. Chem., 2008, 27(6), 497-511.
[44]
Melchert, W.R.; Reis, B.F.; Rocha, F.R.P. Green chemistry and the evolution of flow analysis. A review. Anal. Chim. Acta, 2012, 714, 8- 19.
[45]
Flow injection analysis, 2018 Edition, Tutorial & News on Flow Based micro Analytical Techniques http://www.flowinjection tutorial.com (Accessed January 18, 2019).
[46]
Jaikrajang, N.; Kruanetr, S.; Harding, D.J.; Rattanakit, P. A simple flow injection spectrophotometric procedure for iron(III) determination using Phyllanthus emblica Linn. as a natural reagent. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2018, 204, 726-734.
[47]
Silva, S.G.; Nóbrega, J.A.; Rocha, F.R.P. Exploiting Mn(III)/EDTA complex in a flow system with solenoid micro-pumps coupled to long pathlength spectrophotometry for fast manganese determination. Microchem. J., 2011, 98, 109-114.
[48]
Teixeira, L.S.G.; Rocha, F.R.P. Green analytical procedure for sensitive and selective determination of iron in water samples by flow-injection solid-phase spectrophotometry. Talanta, 2007, 71, 1507-1511.
[49]
Escudero, L.B.; Olsina, R.A.; Wuilloud, R.G. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry. Talanta, 2013, 116, 133-140.
[50]
Praveen, R.S.; Daniel, S.; Rao, T.P.; Sampath, S.; Rao, K.S. Flow injection on-line solid phase extractive preconcentration of palladium(II) in dust and rock samples using exfoliated graphite packed microcolumns and determination by flame atomic absorption spectrometry. Talanta, 2006, 70, 437-443.
[51]
Batista, A.D.; Rocha, F.R.P. A green flow-injection procedure for fluorimetric determination of bisphenol A in tap waters based on the inclusion complex with β-cyclodextrin. Intern.. J. Environ. Anal. Chem., 2013, 93(13), 1402-1412.
[52]
Grand, M.; Oliveira, H.M.; Ruzicka, J.; Measures, C. Determination of dissolved zinc in seawater using micro-Sequential Injection lab-on-valve with fluorescence detection. Analyst , 2011, 136, 2747-2755.
[53]
Del Río, V.; Larrechi, M.S.; Callao, M.P. Determination of sulphate in water and biodiesel samples by a sequential injection analysis-Multivariate curve resolution method. Anal. Chim. Acta, 2010, 676, 28-33.
[54]
Araujo, A.R.T.S.; Lucia, M.; Saraiva, M.F.S.; Lima, J.L.F.C.; Gracias, M.; Korn, A. Flow methodology for methanol determination in biodiesel exploiting membrane-based extraction. Anal. Chim. Acta, 2008, 613, 177-183.
[55]
Ayala, A.; Leal, L.O.; Ferrer, L.; Cerdà, V. Multiparametric automated system for sulfate, nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis. Microchem. J., 2012, 100, 55-60.
[56]
Fan, J.; Sun, Y.; Wang, J.; Fan, M. An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater. Anal. Chim. Acta, 2009, 640, 58-62.
[57]
Borges, S.S.; Reis, B.F. An environmental friendly procedure for photometric determination of hypochlorite in tap water employing a miniaturized multicommuted flow analysis setup. J. Autom. Methods Manag. Chem., 2011, 2011, 463286-463292.
[58]
Ródenas-Torralba, E.; Reis, B.F.; Morales-Rubio, A.; de la Guardia, M. An environmentally friendly multicommutated alternative to the reference method for anionic surfactant determination in water. Talanta, 2005, 66(3), 591-599.
[59]
Manera, M.; Miró, M.; Estela, J.M.; Cerdà, V. Multi-syringe flow injection solid-phase extraction system for on-line simultaneous spectrophotometric determination of nitro-substituted phenol isomers. Anal. Chim. Acta, 2007, 582, 41-49.
[60]
Serra, A.M.; Estela, J.M.; Cerdà, V. An MSFIA system for mercury speciation based on an anion-exchange membrane. Talanta, 2009, 78, 790-794.
[61]
Semenova, N.V.; Leal, L.O.; Forteza, R.; Cerda, V. Antimony determination and speciation by multisyringe flow injection analysis with hydride generation-atomic fluorescence detection. Anal. Chim. Acta, 2005, 530, 113-120.
[62]
Wierucka, M.; Biziuk, M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Analyt. Chem., 2014, 59, 50-58.
[63]
Souza-Silva, E.A.; Jiang, R.; Rodríguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Analyt. Chem., 2015, 71, 224-235.
[64]
Spietelun, A.; Marcinkowski, L.; de la Guardia, M.; Namieśnik, J. Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta, 2014, 119, 34-45.
[65]
Zeng, C.; Hu, Y.; Luo, J. Ionic liquid-based hollow fiber supported liquid membrane extraction combined with thermospray flame furnace AAS for the determination of cadmium. Microchim. Acta, 2012, 177, 53-58.
[66]
Soylak, M.; Khan, M.; Yilmaz, E. Switchable solvent based liquid phase microextraction of uranium in environmental samples: a green approach. Anal. Methods, 2016, 8, 979-986.
[67]
Farahani, Hadi.; Shokouhi, M.; Rahimi-Nasrabadi, M.; Zare-Dorabei, R. Green chemistry approach to analysis of formic acid and acetic acid in aquatic environment by headspace water-based liquid-phase microextraction and high-performance liquid chromatography. Toxicol. Environ. Chem., 2016, 98(7), 714-726.
[68]
Aydin, F.; Yilmaz, E.; Soylak, M. A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchem. J., 2017, 132, 280-285.
[69]
Rodriguez-Lafuente, A.; Piri-Moghadam, H.; Lord, H.L.; Obal, T.; Pawliszyn, J. Inter-laboratory validation of automated SPME-GC/MS for determination of pesticides in surface and ground water samples: sensitive and green alternative to liquid-liquid extraction. Water Qual. Res. J. Canada, 2016, 51, 331-343.
[70]
Hsin-Pin, H.; Ren-Jye, L.; Maw-Rong, L. Purge-assisted headspace solid-phase microextraction combined with gas chromatography-mass spectrometry for determination of chlorophenols in aqueous samples. J. Chromatogr. A, 2008, 1213, 245-248.
[71]
Ma, K.; Zhang, J.N.; Zhao, M.; He, Y.J. Accurate analysis of trace earthy-musty odorants in water by headspace solid phase microextraction gas chromatography-mass spectrometry. J. Sep. Sci., 2012, 35(12), 1494-1501.
[72]
Benanou, D.; Acobas, F.; de Roubin, M.R. Optimization of stir bar sorptive extraction applied to the determination of odorous compounds in drinking water. Water Sci. Technol., 2004, 49(9), 161-170.
[73]
Neng, N.R.; Santalla, R.P.; Nogueira, J.M.F. Determination of tributyltin in environmental water matrices using stir bar sorptive extraction with in-situ derivatisation and large volume injection-gas chromatography-mass spectrometry. Talanta, 2014, 126, 8-11.
[74]
Camino-Sánchez, F.J.; Zafra-Gómez, A.; Pérez-Trujillo, J.P.; Conde-González, J.E.; Marques, J.C.; Vílchez, J.L. Validation of a GC-MS/MS method for simultaneous determination of 86 persistent organic pollutants in marine sediments by pressurized liquid extraction followed by stir bar sorptive extraction. Chemosphere, 2011, 84, 869-881.
[75]
Cortada, C.; Vidal, L.; Tejada, S.; Romo, A.; Canals, A. Determination of organochlorine pesticides in complex matrices by single-drop microextraction coupled to gas chromatography-mass spectrometry. Anal. Chim. Acta, 2009, 638, 29-35.
[76]
Senra-Ferreiro, S.; Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Griess micro-assay for the determination of nitrite by combining fibre optics-based cuvetteless UV-Vis micro-spectrophotometry with liquid-phase microextraction. Anal. Chim. Acta, 2010, 668, 195-200.
[77]
Bruzzoniti, M.C.; Checchini, L.; De Carlo, R.M.; Orlandini, S.; Rivoira, L.; Del Bubba, M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Anal. Bioanal. Chem., 2014, 406, 4089-4116.
[78]
Bragança, I.; Plácido, A.; Paíga, P.; Domingues, V.F.; Delerue-Matos, C. QuEChERS: A new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci. Total Environ., 2012, 433, 281-289.
[79]
Brondi, S.H.G.; de Macedo, A.N.; Vicente, G.H.L.; Nogueira, A.R.A. Evaluation of the QuEChERS method and gas chromatography-mass spectrometry for the analysis pesticide residues in water and sediment. Bull. Environ. Contam. Toxicol., 2011, 86, 18-22.
[80]
Ncube, S.; Tavengwa, N.; Soqaka, A.; Cukrowska, E.; Chimuka, L. Development of a single format membrane assisted solvent extraction-molecularly imprinted polymer technique for extraction of polycyclic aromatic hydrocarbons in wastewater followed by gas chromatography mass spectrometry determination. J. Chromatogr. A, 2018, 1569, 36-43.
[81]
Díaz-Álvarez, M.; Barahona, F.; Turiel, E.; Martín-Esteban, A. Supported liquid membrane-protected molecularly imprinted beads for micro-solid phase extraction of sulfonamides in environmental waters. J. Chromatogr. A, 2014, 1357, 158-164.
[82]
Speltini, A.; Sturini, M.; Maraschi, F.; Viti, S.; Sbarbada, D.; Profumo, A. Fluoroquinolone residues in compost by green enhanced microwave-assisted extraction followed by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A, 2015, 1410, 44-50.
[83]
Vega-Morales, T.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Determination of various estradiol mimicking-compounds in sewage sludge by the combination of microwave-assisted extraction and LC-MS/MS. Talanta, 2011, 85, 1825-1834.
[84]
Trenholm, R.A.; Vanderford, B.J.; Snyder, S.A. On-line solid phase extraction LC-MS/MS analysis of pharmaceutical indicators in water: A green alternative to conventional methods. Talanta, 2009, 79, 1425-1432.
[85]
Mellina, F.M.A.; Santos, D.R.; de Oliveira, M.A.L.; Matos, R.C.; Matos, M.A.C. Box-Behnken design applied to optimize the ultrasound-assisted extraction of petroleum biomarkers in river sediment samples using green analytical chemistry. Anal. Methods, 2017, 9, 5859-5867.
[86]
Canosa, P.; Pérez-Palacios, D.; Garrido-López, A.; Tena, M.T.; Rodríguez, I.; Rubí, E.; Cela, R. Pressurized liquid extraction with in-cell clean-up followed by gas chromatography-tandem mass spectrometry for the selective determination of parabens and triclosan in indoor dust. J. Chromatogr. A, 2007, 1161, 105-112.
[87]
Ojeda, C.B.; Rojas, F.S.; Pavón, J.M.C. Preconcentration of Cadmium in environmental samples by cloud point extraction and determination by FAAS. Am. J. Anal. Chem., 2010, 1, 127-134.
[88]
Gouda, A.A. Cloud point extraction, preconcentration and spectrophotometric determination of trace amount of manganese(II) in water and food samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 131, 138-144.
[89]
Amezcua-Allieri, M.A.; Ávila-Chávez, M.A.; Trejo, A.; Meléndez-Estrada, J. Removal of polycyclic aromatic hydrocarbons from soil: A comparison between bioremoval and supercritical fluids extraction. Chemosphere, 2012, 86, 985-993.
[90]
Gonçalves, C.; Carvalho, J.J.; Azenha, M.A.; Alpendurada, M.F. Optimization of supercritical fluid extraction of pesticide residues in soil by means of central composite design and analysis by gas chromatography-tandem mass spectrometry. J. Chromatogr. A, 2006, 1110, 6-14.
[91]
Armenta, S.; Garrigues, S.; de la Guardia, M. The role of green extraction techniques in green analytical chemistry. Trends Analyt. Chem., 2015, 71, 2-8.
[92]
Han, D.; Row, K.H. Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchim. Acta, 2012, 176, 1-22.
[93]
Namieśnik, J.; Spietelun, A.; Marcinkowski, L. Green Sample Preparation Techniques for Chromatographic Determination of Small Organic Compounds. Int. J. Chem. Eng. Appl., 2015, 6(3), 215-219.
[94]
Lacroix, C.; Le Cuff, N.; Receveur, J.; Moraga, D.; Auffret, M.; Guyomarch, J. Development of an innovative and “green” stir bar sorptive extraction-thermal desorption-gas chromatography-tandem mass spectrometry method for quantification of polycyclic aromatic hydrocarbons in marine biota. J. Chromatogr. A, 2014, 1349, 1-10.
[95]
Pawliszyn, J. Solid Phase Microextraction: Theory and Practice; Wiley-VCH: New York, 1997.
[96]
Li, P.; Zhang, X.Q.; Chen, Y.J.; Lian, H.Z.; Hu, X. A sequential solid phase microextraction system coupled with inductively coupled plasma mass spectrometry for speciation of inorganic arsenic. Anal. Methods, 2014, 6, 4205-4211.
[97]
Zhao, L.; Zhu, Q.; Mao, L.; Chen, Y.; Lian, H.; Hu, X. Preparation of thiol- and amine-bifunctionalized hybrid monolithic column via “one-pot” and applications in speciation of inorganic arsenic. Talanta, 2019, 192, 339-346.
[98]
Tobiszewski, M.; Mechlinska, A.; Zygmunt, B.; Namiesnik, J. Green analytical chemistry in sample preparation for determination of trace organic pollutants. Trends Analyt. Chem., 2009, 28, 943-951.
[99]
Jakubowska, N.; Polkowska, Z.; Namieśnik, J.; Przyjazny, A. Analytical applications of membrane extraction for biomedical and environmental liquid sample preparation. Crit. Rev. Anal. Chem., 2005, 35, 217-235.
[100]
Wang, H.; Ding, J.; Ren, N. Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. Trends Anal. Chem., 2016, 75, 197- 208.
[101]
Flores, E. M. M. Microwave-Assisted Sample Preparation for Trace Element Determination, Elsevier: Newnes, 2014.
[102]
Albero, B.; Sanchez-Brunete, C.; Garcia-Valcarcel, A.I.; Perez, R.A.; Tadeo, J.L. Ultrasound-assisted extraction of emerging contaminants from environmental samples. Trends Analyt. Chem., 2015, 71, 110-118.
[103]
Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem., 2017, 34, 540-560.
[104]
Stanisz, E.; Werner, J.; Matusiewicz, H. Mercury species determination by task specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with cold vapour generation atomic absorption spectrometry. Microchem. J., 2013, 110, 28-35.
[105]
Bentlin, F.R.S.; Duarte, F.A.; Dressler, V.L.; Pozebon, D. Arsenic determination in marine sediment using ultrasound for sample preparation. Anal. Sci., 2007, 23, 1097-1101.
[106]
Rocha, A.D.; Batista, F.R.P.; Rocha, G.L.; Donati, J.A.N. Greening sample preparation in inorganic analysis. Trends Analyt. Chem., 2013, 45, 79-92.
[107]
Samaddar, P.; Sen, K. Cloud point extraction: A sustainable method of elemental preconcentration and speciation. J. Ind. Eng. Chem., 2014, 20, 1209-1219.
[108]
Sánchez-Camargo, A.D.P.; Parada-Alonso, F.; Ibáñez, E.; Cifuentes, A. Recent applications of on-line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. J. Sep. Sci., 2018, 1, 1-15.
[109]
Herranz, S.; Ramo’n-Azco’n, J.; Benito-Pen˜a, E.; Marazuela, M.D.; Marco, M.P.; Moreno-Bondi, M.C. Preparation of antibodies and development of a sensitive immunoassay with fluorescence detection for triazine herbicides. Anal. Bioanal. Chem., 2008, 391, 1801-1812.
[110]
Kochana, J.; Gala, A.; Parczewski, A.; Adamski, J. Titania sol-gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Anal. Bioanal. Chem., 2008, 391, 1275-1281.
[111]
Welch, C.J.; Wu, N.; Biba, M.; Hartman, R.; Brkovic, T.; Gong, X.; Helmy, R.; Schafer, W.; Cuff, J.; Pirzada, Z.; Zhou, L. Greening analytical chromatography. Trends Analyt. Chem., 2010, 29(7), 667-680.
[112]
Płotka, J.; Tobiszewski, M.; Sulej, A.M.; Kupska, M.; Górecki, T.; Namieśnik, J. Green chromatography. J. Chromatogr. A, 2013, 1307, 1-20.
[113]
Pérez, R.L.; Escandar, G.M. Experimental and chemometric strategies for the development of Green Analytical Chemistry (GAC) spectroscopic methods for the determination of organic pollutants in natural waters. Sustain. Chem. Pharm, 2016, 4, 1-12.
[114]
Li, J.; Zhu, J.J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst , 2013, 138, 2506-2515.
[115]
Freeman, R.; Willner, I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev., 2012, 41, 4067-4085.
[116]
Costas-Mora, I.; Romero, V.; Lavilla, I.; Bendicho, C. An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. Trends Analyt. Chem., 2014, 57, 64-72.
[117]
Liu, L.; Shan, D.; Zhoua, X.; Shi, H.; Song, B.; Falke, F.; Leinse, A.; Heideman, R. TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosens. Bioelectron., 2018, 106, 117-121.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy