Microorganisms Isolated from Stored Meat in India, with Potential Antimicrobial Activity against Food Pathogens

Author(s): Gokila Thangavel* , Subramaniyan Thiruvengadam .

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: World Health Organization has estimated that 1 in 10 people fall ill and 4, 20, 000 die every year from eating contaminated food. Food pathogens like Escherichia, Salmonella, Staphylococcus and Listeria pose a serious threat to human health.

Objective: The objective was to isolate microbes from meat stored at refrigerated conditions and evaluate the antimicrobial activity of the cell-free supernatant against food pathogens.

Methods: Chicken and Pork samples were procured and stored at refrigerated conditions (4-7ºC) for 2 weeks. The samples were plated on to Nutrient agar (NA) and De Man, Rogosa and Sharpe (MRS) agar for isolation of aerobic and lactic acid bacteria. Cell-free supernatants of the isolates were screened for antimicrobial activity against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes and Staphylococcus aureus by microtiter plate assay. The 5 most - effective strains were screened for hemolytic activity and identified by 16s rRNA sequencing.

Results: A total of 110 strains were isolated, out of which the top 5 most - effective strains were all from MRS agar. They showed 88-90% inhibition against E. coli and S. typhimurium, whereas 60 to 70 % against S. aureus and L. monocytogenes. These strains were found to be non - hemolytic and were identified as Leuconostoc spp. namely, L. mesenteroides subsp. mesenteroides J18, CP003101; L. mesenteroides LM2; L. mesenteroides ATCC 8293, CP000414; L. gelidum subsp. gasicomitatum LM G 18811 and L. mesenteroides; LM2, AY675249.

Conclusion: Leuconostoc are known to be effective in controlling foodborne pathogens and therefore, these strains have the potential for application in food and human.

Keywords: Food pathogens, antimicrobial activity, Leuconostoc, Hemolytic activity, 16s rRNA sequencing, E. coli, Salmonella.

Food safety. Fact sheet Oct 2017. http://www.who.int/ mediacentre/factsheets/fs399/en assessed April 2nd, 2018 .
Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis., 1999, 5(5), 607-625.
Hintz, T.; Matthews, K.K.; Di, R. The use of plant antimicrobial compounds for food preservation. BioMed Res. Int., 2015.246264
Arshad, M.S.; Batool, S.A. Natural antimicrobials, their sources and food safety, food additives; InTech, 2017, p. 70197.
Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol., 2001, 71, 1-20.
Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol., 2012, 3, 287.
Paul, R.R.; Morgan, S.; Hill, C. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol., 2002, 79, 3-16.
Saranraj, P. Lactic acid bacteria and its antimicrobial properties: a review. Int. J. Pharm., 2013, 4(6), 1124-1133.
Cizeikiene, D.; Juodeikien, G.; Paskeviciu, A.; Bartkiene, E. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control, 2013, 31, 539-545.
Mezaini, A.; Chihib, N.E. DilmiBouras, A.; Nedjar-Arroume, N.; Hornez, J.P. Antibacterial activity of some lactic acid bacteria isolated from an algerian dairy product. J. Environ. Public Health, 2009.678495
Nguyen, H.T.; Elegado, F.B.; Librojo-Basilio, N.T.; Mabesa, R.C.; Dizon, E.I. Isolation and characterization of selected lactic acid bacteria for improved processing of Nemchua, a traditional fermented meat from Vietnam. Benef. Microbes, 2013, 1, 67-74.
Ramirez-Chavarin, M.L.; Wacher, C.; Eslava-Campos, C.A.; Perez-Chabela, M.L. Probiotic potential of thermotolerant lactic acid bacteria strains isolated from cooked meat products. Int. Food Res. J., 2013, 20(2), 991-1000.
Schillinger, U.; Lucke, F.K. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol., 1989, 55(8), 1901-1906.
Lengkey, H.A.W.; Roostita, L.B.; Togoe, I.; Taşbac, B.A.; Ludong, M. Isolation and identification of lactic acid bacteria from raw poultry meat. Biotechnol. Anim. Husb., 2009, 25(5-6), 1071-1077.
Doulgeraki, A.I.; Paramithiotis, S.; Kagkli, D.M.; Nychas, G.E. Lactic acid bacteria population dynamics during minced beef storage under aerobic or modified atmosphere packaging conditions. Food Microbiol., 2010, 27, 1028-1034.
Thanigaivel, G.; Anandhan, A.S. Isolation and characterization of microorganisms from raw meat obtained from different market places in and around Chennai. J. Pharm. ChemBiol. Sci., 2015, 3(2), 295-301.
Wayne, P.A. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; Approved Standard - Tenth Edition. CLSI document M07-A10.: Clinal and Laboratory Standards Institute, , 2015.
Becker, W. The Necessity of a standard blood-agar plate for the determination of hemolysis by Streptococci. J. Infect. Dis., 1916, 19(6), 754-759.
Vasconcelos, H.; Saraiva, C.; Almeida, M.M.M.J. Evaluation of the spoilage of raw chicken breast fillets using Fourier Transform Infrared Spectroscopy in tandem with chemometrics. Food Bioprocess Technol., 2014, 7, 2330-2341.
Szosland-Fałtyn, A.; Bartodziejska, B.; Krolasik, J.; Paziak-Domańska, B.; Polak, E. Comparison of the microbial quality of pork and poultry meat with or without rill marinade available in Polish retail markets. Afr. J. Microbiol. Res., 2014, 8, 383-388.
Rouger, A.; Remenant, B.; Prevost, H.; Zagorec, M. A method to isolate bacterial communities and characterize ecosystems from food products: Validation and utilization in as a reproducible chicken meat model. Int. J. Food Microbiol., 2017, 247, 38-47.
Iulietto, M.F.; Paola, S.; Borgogni, E. Cenci-Goga. B. T. Meat Spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria. Ital. J. Anim. Sci., 2015, 14(3), 4011.
Kazemipoor, M.; Radzi, C.W.J.W.M.; Begum, K.; Yaze, I. Screening of antibacterial activity of lactic acid bacteria isolated from fermented vegetables against food borne pathogens. Arch. Des. Sci., 2012, 65(6), 1-10.
Alakomi, H.L.; Skytta, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I.M. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol., 2000, 66(5), 2001-2005.
Reis, J.A.; Paula, A.T.; Casarotti, S.; Penna, A.L.B. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev., 2012, 4, 124-140.
Goto, S.; Takahashi, H.; Kawasaki, S.; Kimura, B.; Fujii, T.; Nakatsuji, M.; Watanabe, I. Detection of Leuconostoc strains at a Meat Processing plant using Polymerase Chain Reaction. J. Food Hyg. Soc. Japan, 2004, 45(1), 25-28.
Nissen, H.; Holck, A.; Dainty, R.H. Identification of Carnobacterium spp. and Leuconostoc spp. in meat by genus‐specific 16S rRNA probes. Lett. Appl. Microbiol., 1994, 19, 165-168.
Vihavainen, E.J.; Murros, A.E.; Johanna, K.J. Leuconostoc spoilage of vacuum-packaged vegetable sausages. J. Food Prot., 2008, 71(11), 2312-2315.
Wang, H.Y.; Wen, C.F.; Chiu, Y.H.; Lee, I.N.; Kao, H.Y.; Lee, I.C.; Ho, W.H. Leuconostoc mesenteroides growth in food products: Prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems. PLoS One, 2013, 8(5)e64995
Benmechernene, Z.; Chentouf, H.F.; Yahia, B.; Fatima, G.; Quintela-Baluja, M.; Calo-Mata, P.; Barros-Velázquez, J. Technological Aptitude and applications of Leuconosoc mesenteroides Bioactive strains isolated from Algerian raw camel milk. BioMed Res. Int., 2013.418132
Paula, A.T.; Ceneviva, A.B.J.; Todorov, S.D.; Penna, A.L.B. The two faces of Leuconostoc mesenteroides in food systems. Food Rev. Int., 2015, 31, 147-171.
Harding, C.D.; Shaw, E.G. Antimicrobial activity of Leuconostoc gelidum against closely related species and Listeria monocytogenes. J. Appl. Bacteriol., 1990, 69, 648-654.
Martinez, C.R.F.; Martinis, C.P.E. Effect of Leuconostoc mesenteroides 11 bacteriocin in the multiplication control of Listeria monocytogenes 4b1. Cienc. Tecnol. Aliment. Campinas, 2006, 26(1), 52-55.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [401 - 409]
Pages: 9
DOI: 10.2174/1389201020666190314125534
Price: $58

Article Metrics

PDF: 19
PRC: 1