Corticosteroid Catabolism by Klebsiella pneumoniae as a Possible Mechanism for Increased Pneumonia Risk

Author(s): Pritam Chattopadhyay, Goutam Banerjee*.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Several strains of Klebsiella pneumoniae are responsible for causing pneumonia in lung and thereby causing death in immune-suppressed patients. In recent year, few investigations have reported the enhancement of K. pneumoniae population in patients using corticosteroid containing inhaler.

Objectives: The biological mechanism(s) behind this increased incidence has not been elucidated. Therefore, the objective of this investigating was to explore the relation between Klebsiella pneumoniae and increment in carbapenamase producing Enterobacteriaceae score (ICS).

Methods: The available genomes of K. pneumoniae and the amino acid sequences of steroid catabolism pathway enzymes were taken from NCBI database and KEGG pathway tagged with UniPort database, respectively. We have used different BLAST algorithms (tBLASTn, BLASTp, psiBLAST, and delBLAST) to identify enzymes (by their amino acid sequence) involved in steroid catabolism.

Results: A total of 13 enzymes (taken from different bacterial candidates) responsible for corticosteroid degradation have been identified in the genome of K. pneumoniae. Finally, 8 enzymes (K. pneumoniae specific) were detected in four clinical strains of K. pneumoniae. This investigation intimates that this ability to catabolize corticosteroids could potentially be one mechanism behind the increased pneumonia incidence.

Conclusion: The presence of corticosteroid catabolism enzymes in K. pneumoniae enhances the ability to utilize corticosteroid for their own nutrition source. This is the first report to demonstrate the corticosteroid degradation pathway in clinical strains of K. pneumoniae.

Keywords: Corticosteroid, bronchopneumonia, Klebsiella pneumoniae, biodegradation, computational analysis, KEGG pathway.

Briggs, G.G.; Freeman, R.K.; Yaffe, S.J. Drugs in pregnancy and lactation: a reference guide to fetal and neonatal risk; Lippincott Williams & Wilkins, 2012, p. 600, ISBN 1451153597.
Spratto, G.R.; Woods, A.L. Delmar Nurse’s Drug Handbook 2012; Cengage Learning, 2012, p. 748, ISBN 1111310653.
Holm, A.; Dijkstra, M.; Kleinjan, A.; Severijnen, L.A.; Boks, S.; Mulder, P.; Fokkens, W. Fluticasone propionate aqueous nasal spray reduces inflammatory cells in unchallenged allergic nasal mucosa: Effects of single allergen challenge. J. Allergy Clin. Immunol., 2001, 107, 627-633.
Johnson, M. The anti-inflammatory profile of fluticasone propionate. Allergy, 1995, 50(23)(Suppl.), 11-14.
Patterson, C.M.; Morrison, R.L.; D’Souza, A.; Teng, X.S.; Happel, K.I. Inhaled fluticasone propionate impairs pulmonary clearance of Klebsiella pneumoniae in mice. Respir. Res., 2012, 13, 40.
Moody, A.J.; Yandle, G.M.; Happel, K.I. Effects of nebulized budesonide or fluticasone propionate in a murine model of pulmonary Klebsiella pneumoniae infection. Am. J. Respir. Crit. Care Med., 2014, 189, A6629.
Lodha, R.; Kabra, S.K.; Pandey, R.M. Antibiotics for community-acquired pneumonia in children. Cochrane Database Syst. Rev., 2013, 6, CD004874.
Bergstrand, L.H.; Cardenas, E.; Holert, J.; Van Hamme, J.D.; Mohn, W.W. Delineation of steroid-degrading microorganisms through comparative genomic analysis. MBio, 2016, 7, e00166-e16.
Fujii, K.; Kikuchi, S.; Satomi, M.; Ushio-Sata, N.; Morita, N. Degradation of 17beta-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl. Environ. Microbiol., 2002, 68, 2057-2060.
Hashimoto, T.; Onda, K.; Morita, T.; Luxmy, B.S.; Tada, K.; Miya, A.; Murakami, T. Contribution of the estrogen-degrading bacterium Novosphingobium sp. strain JEM-1 to estrogen removal in wastewater treatment. J. Environ. Eng. ASCE, 2010, 136, 890-896.
Boratyn, G.M.; Schäffer, A.A.; Agarwala, R.; Altschul, S.F.; Lipman, D.J.; Madden, T.L. Domain enhanced lookup time accelerated BLAST. Biol. Direct, 2012, 7, 12.
Borer, A.; Saidel-Odes, L.; Riesenberg, K.; Eskira, S.; Peled, N.; Nativ, R.; Schlaeffer, F.; Sherf, M. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect. Control Hosp. Epidemiol., 2009, 30, 972-976.
Durdu, B.; Hakyemez, I.N.; Bolukcu, S.; Okay, G.; Gultepe, B.; Aslan, T. Mortality markers in nosocomial Klebsiella pneumoniae bloodstream infection. Springerplus, 2016, 5, 1892.
Fouts, D.E.; Tyler, H.L.; DeBoy, R.T.; Daugherty, S.; Ren, Q.; Badger, J.H.; Durkin, A.S.; Huot, H.; Shrivastava, S.; Kothari, S.; Dodson, R.J.; Mohamoud, Y.; Khouri, H.; Roesch, L.F.; Krogfelt, K.A.; Struve, C.; Triplett, E.W.; Methé, B.A. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet., 2008, 4, e1000141.
Xie, G.; Ramirez, M.S.; Marshall, S.H.; Hujer, K.M.; Lo, C.C.; Johnson, S.; Li, P.E.; Davenport, K.; Endimiani, A.; Bonomo, R.A.; Tolmasky, M.E.; Patrick, S.G.; Chain, P.S.G. Genome sequences of Two Klebsiella pneumoniae isolates from different geographical regions, Argentina (Strain JHCK1) and the United States (Strain VA360). Genome Announc., 2013, 12, e00168-e13.
Wright, M.S.; Perez, F.; Brinkac, L.; Jacobs, M.R.; Kaye, K.; Cober, E.; van Duin, D.; Marshall, S.H.; Hujer, A.M.; Rudin, S.D.; Hujer, K.M.; Bonomo, R.A.; Adams, M.D. Population structure of KPC-producing Klebsiella pneumoniae isolates from Midwestern U.S. hospitals. Antimicrob. Agents Chemother., 2014, 58, 4961-4965.
Conlan, S.; Park, M.; Deming, C.; Thomas, P.J.; Young, A.C.; Coleman, H.; Sison, C. NISC Comparative Sequencing Program; Weingarten, R.A.; Lau, A.F.; Dekker, J.P.; Palmore, T.N.; Frank, K.M.; Segre, J.A. Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during long-term patient colonization. MBio, 2016, 7, e00742-e16.
Fodah, R.A.; Scott, J.B.; Tam, H.H.; Yan, P.; Pfeffer, T.L.; Bundschuh, R.; Warawa, J.M. Correlation of Klebsiella pneumoniae comparative genetic analyses with virulence profiles in a murine respiratory disease model. PLoS One, 2014, 9, e107394.
Marques, M.A.; Berrêdo-Pinho, M.; Rosa, T.L.; Pujari, V.; Lemes, R.M.; Lery, L.M.; Silva, C.A.; Guimarães, A.C.; Atella, G.C.; Wheat, W.H.; Brennan, P.J.; Crick, D.C.; Belisle, J.T.; Pessolani, M.C. The essential role of cholesterol metabolism in the intracellular survival of Mycobacterium leprae is not coupled to central carbon metabolism and energy production. J. Bacteriol., 2015, 197, 3698-3707.
Mattos, K.A.; Oliveira, V.C.; Berrêdo-Pinho, M.; Amaral, J.J.; Antunes, L.C.; Melo, R.C.; Acosta, C.C.; Moura, D.F.; Olmo, R.; Han, J.; Rosa, P.S.; Almeida, P.E.; Finlay, B.B.; Borchers, C.H.; Sarno, E.N.; Bozza, P.T.; Atella, G.C.; Pessolani, M.C. Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: A potential target for new drugs for leprosy treatment. Cell. Microbiol., 2014, 16, 797-815.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [309 - 316]
Pages: 8
DOI: 10.2174/1389201020666190313153841
Price: $65

Article Metrics

PDF: 28