Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Bafilomycin-A1 and ML9 Exert Different Lysosomal Actions to Induce Cell Death

Author(s): Soni Shaikh*, Suman K Nandy, Carles Cantí and Sergio Lavandero

Volume 12, Issue 4, 2019

Page: [261 - 271] Pages: 11

DOI: 10.2174/1874467212666190308131250

Price: $65

Abstract

Objective: Bafilomycin-A1 and ML9 are lysosomotropic agents, irrespective of cell types. However, the mechanisms of lysosome targeting either bafilomycin-A1 or ML9 are unclear.

Methods: The present research has been carried out by different molecular and biochemical analyses like western blot, confocal imaging and FACS studies, as well as molecular docking.

Results: Our data shows that pre-incubation of neonatal cardiomyocytes with ML9 for 4h induced cell death, whereas a longer period of time (24h) with bafilomycin-A1 was required to induce an equivalent effect. Neither changes in ROS nor ATP production is associated with such death mechanisms. Flow cytometry, LC3-II expression levels, and LC3-GFP puncta formation revealed a similar lysosomotropic effect for both compounds. We used a molecular docking approach, that predicts a stronger inhibitory activity against V-ATPase-C1 and C2 domains for bafilomycin-A1 in comparison to ML9.

Conclusion: Bafilomycin-A1 and ML9 are lysosomotropic agents, involved in cell death events. But such death events are not associated with ATP and ROS production. Furthermore, both the drugs target lysosomes through different mechanisms. For the latter, cell death is likely due to lysosomal membrane permeabilization and release of lysosomal proteases into the cytosol.

Keywords: ML9, bafilomycin-A1, lysosome, cardiomyocyte, Na+/K+-ATPase, protein modelling, macroautophagy.

Graphical Abstract
[1]
Ohsumi, Y. Historical landmarks of autophagy research. Cell Res., 2014, 24(1), 9-23.
[http://dx.doi.org/10.1038/cr.2013.169] [PMID: 24366340]
[2]
Shaikh, S.; Troncoso, R.; Criollo, A.; Bravo-Sagua, R.; García, L.; Morselli, E.; Cifuentes, M.; Quest, A.F.G.; Hill, J.A.; Lavandero, S. Regulation of cardiomyocyte autophagy by calcium. Am. J. Physiol. Endocrinol. Metab., 2016, 310(8), E587-E596.
[http://dx.doi.org/10.1152/ajpendo.00374.2015] [PMID: 26884385]
[3]
Piao, S.; Amaravadi, R.K. Targeting the lysosome in cancer. Ann. N. Y. Acad. Sci., 2016, 1371(1), 45-54.
[http://dx.doi.org/10.1111/nyas.12953] [PMID: 26599426]
[4]
Oot, R.A.; Couoh-Cardel, S.; Sharma, S.; Stam, N.J.; Wilkens, S. Breaking up and making up: The secret life of the vacuolar H+ -ATPase. Protein Sci., 2017, 26(5), 896-909.
[http://dx.doi.org/10.1002/pro.3147] [PMID: 28247968]
[5]
Fennelly, C.; Amaravadi, R.K. Lysosomal Biology in Cancer. Methods Mol. Biol., 2017, 1594, 293-308.
[http://dx.doi.org/10.1007/978-1-4939-6934-0_19] [PMID: 28456991]
[6]
Toshima, K.; Jyojima, T.; Yamaguchi, H.; Noguchi, Y.; Yoshida, T.; Murase, H.; Nakata, M.; Matsumura, S. Total Synthesis of Bafilomycin A(1). J. Org. Chem., 1997, 62(10), 3271-3284.
[http://dx.doi.org/10.1021/jo970314d] [PMID: 11671714]
[7]
Werner, G.; Hagenmaier, H.; Albert, K.; Kohlshorn, H.; Drautz, H. The structure of the bafilomycins, a new group of macrolide antibiotics. Tetrahedron Lett., 1983, 24, 5193-5196.
[http://dx.doi.org/10.1016/S0040-4039(00)88394-X]
[8]
Corey, E.J.; Ponder, J.W. Stereochemistry of the hygrolidins. Tetrahedron Lett., 1984, 25, 4325-4328.
[http://dx.doi.org/10.1016/S0040-4039(01)81429-5]
[9]
Yoshimori, T.; Yamamoto, A.; Moriyama, Y.; Futai, M.; Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem., 1991, 266(26), 17707-17712.
[PMID: 1832676]
[10]
Nah, J.; Fernández, A.F.; Kitsis, R.N.; Levine, B.; Sadoshima, J. Does autophagy mediatecardiac myocyte death during stress? Circ. Res., 2016, 119(8), 893-895.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309765] [PMID: 27688304]
[11]
Pizarroa, M.; Troncosoa, R.; Martínezc, G.J.; Chiong, M.; Castroc, P.F.; Lavandero, S. Basal autophagy protects cardio-myocytes from doxorubicin-induced toxicity. Toxicol., 2016, 370, 41-48.
[http://dx.doi.org/10.1016/j.tox.2016.09.011]
[12]
Kinoshita, K.; Waritani, T.; Noto, M.; Takizawa, K.; Minemoto, Y.; Nishikawa, A.; Ohkuma, S. Bafilomycin A1 induces apoptosis in PC12 cells independently of intracellular pH. FEBS Lett., 1996, 398(1), 61-66.
[http://dx.doi.org/10.1016/S0014-5793(96)01182-9] [PMID: 8946954]
[13]
Wu, Y.C.; Wu, W.K.K.; Li, Y.; Yu, L.; Li, Z.J.; Wong, C.C.M.; Li, H.T.; Sung, J.J.Y.; Cho, C.H. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochem. Biophys. Res. Commun., 2009, 382(2), 451-456.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.051] [PMID: 19289106]
[14]
Kondratskyi, A.; Yassine, M.; Slomianny, C.; Kondratska, K.; Gordienko, D.; Dewailly, E.; Lehen’kyi, V.; Skryma, R.; Prevarskaya, N. Identification of ML-9 as a lysosomotropic agent targeting autophagy and cell death. Cell Death Dis., 2014, 5e1193.
[http://dx.doi.org/10.1038/cddis.2014.156] [PMID: 24763050]
[15]
Shaikh, S.; Troncoso, R.; Mondaca-Ruff, D.; Parra, V.; Garcia, L.; Chiong, M.; Lavandero, S. The STIM1 inhibitor ML9 disrupts basal autophagy in cardiomyocytes by decreasing lysosome content. Toxicol. In Vitro, 2018, 48, 121-127.
[http://dx.doi.org/10.1016/j.tiv.2018.01.005] [PMID: 29337250]
[16]
Kågedal, K.; Zhao, M.; Svensson, I.; Brunk, U.T. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J., 2001, 359(Pt 2), 335-343.
[http://dx.doi.org/10.1042/bj3590335] [PMID: 11583579]
[17]
Nakashima, S.; Hiraku, Y.; Tada-Oikawa, S.; Hishita, T.; Gabazza, E.C.; Tamaki, S.; Imoto, I.; Adachi, Y.; Kawanishi, S. Vacuolar H+-ATPase inhibitor induces apoptosis via lysosomal dysfunction in the human gastric cancer cell line MKN-1. J. Biochem., 2003, 134(3), 359-364.
[http://dx.doi.org/10.1093/jb/mvg153] [PMID: 14561721]
[18]
Tanida, I.; Ueno, T.; Kominami, E. LC3 and Autophagy. Methods Mol. Biol., 2008, 445, 77-88.
[http://dx.doi.org/10.1007/978-1-59745-157-4_4] [PMID: 18425443]
[19]
UniProt: the universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169.
[http://dx.doi.org/10.1093/nar/gkw1099] [PMID: 27899622]
[20]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[21]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[22]
Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: protein structure and function prediction. Nat. Methods, 2015, 12(1), 7-8.
[http://dx.doi.org/10.1038/nmeth.3213] [PMID: 25549265]
[23]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[24]
Källberg, M.; Wang, H.; Wang, S.; Peng, J.; Wang, Z.; Lu, H.; Xu, J. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc., 2012, 7(8), 1511-1522.
[http://dx.doi.org/10.1038/nprot.2012.085] [PMID: 22814390]
[25]
Buchan, D.W.; Minneci, F.; Nugent, T.C.; Bryson, K.; Jones, D.T. Scalable web services for the PSIPRED Protein Analysis Work bench. Nucleic Acids Res., 2013.41(Web Server issue)W349-57.
[PMID: 23748958]
[26]
Wallner, B.; Elofsson, A. Pcons5: combining consensus, structural evaluation and fold recognition scores. Bioinformatics, 2005, 21(23), 4248-4254.
[http://dx.doi.org/10.1093/bioinformatics/bti702] [PMID: 16204344]
[27]
Zimmermann, L.; Stephens, A.; Nam, S.Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A.N.; Alva, V. A completely re-implemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol., 2018, 430(15), 2237-2243.
[http://dx.doi.org/10.1016/j.jmb.2017.12.007] [PMID: 29258817]
[28]
Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res., 2004.32(Web Server issue)W526-31.
[http://dx.doi.org/10.1093/nar/gkh468] [PMID: 15215442]
[29]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res.,, 2014. 42(Web Server issue)W252-8.
[http://dx.doi.org/10.1093/nar/gku340] [PMID: 24782522]
[30]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: a program to check the stereochemical qua-lity of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[31]
Hooft, R.W.; Vriend, G.; Sander, C.; Abola, E.E. Errors in protein structures. Nature, 1996, 381, 6580-272.
[http://dx.doi.org/10.1038/381272a0]
[32]
Bowie, J.U.; Lüthy, R.; Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science, 1991, 253(5016), 164-170.
[http://dx.doi.org/10.1126/science.1853201] [PMID: 1853201]
[33]
Luthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature, 1992, 356, 6364-6383.
[http://dx.doi.org/10.1038/356083a0]
[34]
Colovos, C.; Yeates, T.O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[35]
Pontius, J.; Richelle, J.; Wodak, S.J. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol., 1996, 264(1), 121-136.
[http://dx.doi.org/10.1006/jmbi.1996.0628] [PMID: 8950272]
[36]
Wass, M.N.; Kelley, L.A.; Sternberg, M.J. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res., , 2010.38(Web Server issue)W469-73.
[http://dx.doi.org/10.1093/nar/gkq406] [PMID: 20513649]
[37]
Yang, J.; Roy, A.; Zhang, Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 2013, 29(20), 2588-2595.
[http://dx.doi.org/10.1093/bioinformatics/btt447] [PMID: 23975762]
[38]
Hernandez, M.; Ghersi, D.; Sanchez, R. SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res.,, 2009.37(Web Server issue)W413-6.
[http://dx.doi.org/10.1093/nar/gkp281] [PMID: 19398430]
[39]
Ngan, C.H.; Hall, D.R.; Zerbe, B.; Grove, L.E.; Kozakov, D.; Vajda, S. FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics, 2012, 28(2), 286-287.
[http://dx.doi.org/10.1093/bioinformatics/btr651] [PMID: 22113084]
[40]
Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.; Liang, J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res, 2006.34(Web Server issue) W116-8.
[http://dx.doi.org/10.1093/nar/gkl282] [PMID: 16844972]
[41]
Volkamer, A. Kuhn. D.; Rippmann, F.; Rarey, M. DoGSiteS-corer: a web server for auto-matic binding site prediction, analysis and drug ability assessment. Bioinformatics, 2012, 28, 2074-2075.
[http://dx.doi.org/10.1093/bioinformatics/bts310] [PMID: 22628523]
[42]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem Substance and Compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[43]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[44]
Korb, O.; Stützle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 2009, 49(1), 84-96.
[http://dx.doi.org/10.1021/ci800298z] [PMID: 19125657]
[45]
Murray, C.W.; Auton, T.R.; Eldridge, M.D. Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model. J. Comput. Aided Mol. Des., 1998, 12(5), 503-519.
[http://dx.doi.org/10.1023/A:1008040323669] [PMID: 9834910]
[46]
Nandy, S.K.; Bhuyan, R.; Seal, A. Modelling family 2 cystatins and their interaction with papain. J. Biomol. Struct. Dyn., 2013, 31(6), 649-664.
[http://dx.doi.org/10.1080/07391102.2012.706403] [PMID: 22881286]
[47]
Nandy, S.K.; Seal, A. Structural dynamics investigation of human family 1 & 2 cystatin-cathepsin L1 interaction: a com-parison of binding modes. PLoS One, 2016, 11(10)e0164970
[http://dx.doi.org/10.1371/journal.pone.0164970] [PMID: 27764212]
[48]
Bhuyan, R.; Nandy, S.K.; Seal, A. An in silico structural insights into Plasmodium LytB protein and its inhibition. J. Biomol. Struct. Dyn., 2015, 33(6), 1198-1210.
[http://dx.doi.org/10.1080/07391102.2014.938248] [PMID: 25011618]
[49]
Agnello, M.; Morici, G.; Rinaldi, A.M. A method for measuring mitochondrial mass and activity. Cytotechnology, 2008, 56(3), 145-149.
[http://dx.doi.org/10.1007/s10616-008-9143-2] [PMID: 19002852]
[50]
Chen, H.; Chan, D.C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum. Mol. Genet., 2009, 18(R2), R169-R176.
[http://dx.doi.org/10.1093/hmg/ddp326] [PMID: 19808793]
[51]
Westermann, B. Bioenergetic role of mitochondrial fusion and fission. Biochim. Biophys. Acta, 2012, 1817(10), 1833-1838.
[http://dx.doi.org/10.1016/j.bbabio.2012.02.033] [PMID: 22409868]
[52]
Wu, D.; Yotnda, P. Production and detection of reactive oxy-gen species (ROS) in cancers. J. Vis. Exp.,, 2011, 57e3357.
[53]
Takano, H.; Zou, Y.; Hasegawa, H.; Akazawa, H.; Nagai, T.; Komuro, I. Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid. Redox Signal., 2003, 5(6), 789-794.
[http://dx.doi.org/10.1089/152308603770380098] [PMID: 14588152]
[54]
Mauvezin, C.; Neufeld, T.P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 2015, 11(8), 1437-1438.
[http://dx.doi.org/10.1080/15548627.2015.1066957] [PMID: 26156798]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy