Evaluation of Polyphenolic Profile and Antibacterial Activity of Pomegranate Juice in Combination with Rifampin (R) against MDR-TB Clinical Isolates

Author(s): Manaf AlMatar*, Işıl Var, Begüm Kayar, Emel Eker, Ebru Kafkas, Mozhgan Zarifikhosroshahi, Fatih Köksal.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The global rise of multi-drug resistant M. tuberculosis demands unconventional treatment to enhance the efficiency of current drugs. Punica granatum, which is known as pomegranate, is considered as a member of the Punicaceae family. Pomegranate, which is broadly documented for its activity against a wide spectrum of bacterial pathogens, deserves further scrutiny in this respect.

Methods: Within this scope, this study investigated the effect of fresh pomegranate juice (FPJ) on the antibacterial activity of anti-tuberculosis drugs (Rifampin (R) and Isoniazid (INH)) against MDR-TB clinical isolates. The drug resistance profiles in M. tuberculosis clinical isolates were determined by susceptibility test using BACTEC MGIT 960 system. Four concentrations of fresh pomegranate juice (FPJ) (5%, 10%, 15%, and 20%) were evaluated in combination with R and INH at a dose range of (1.0 µg/ml) and (0.1 µg/ml), respectively against the MDR-TB isolates by the BACTEC MGIT 960 system. Moreover, this study scrutinized individual phenolic compounds of FPJ by using highperformance liquid chromatography (HPLC). The total polyphenols (TP), total flavonoid (TF), total anthocyanins content (TAC), and the antioxidant capacity were also assessed in FPJ.

Results: Synergistic effects were observed between R and INH with FPJ against all tested strains. However, combination therapy of rifampin was more effective than isoniazid one. Therefore, the combination of R and FPJ has been used against (27) MDR-TB clinical isolates. 5% of FPJ plus R (1.0 µg/ml) were found to suppress the growth of one isolates for first group (INH and R resistant). However, 5% of FPJ demonstrated no synergistic impact with R for second (SM, R and INH resistant) and third group (INH, EMB, R and SM resistant). Moreover, 10% of FPJ and R (1.0 μg/ml) inhibited the bacterial growth of three isolates of first group and two isolates and one isolate for second and third group, respectively. Remarkably, 15% of FPJ plus R (1.0 µg/ml) appeared to inhibit the growth of MDR-TB isolates for all tested groups indicating a strong synergistic effect. Regarding H37RV, the complete inhibition of the bacterial growth was found to occur at 15% and 20% concentrations of FPJ only. Minimum inhibitory concentration (MIC) of FPJ ranged from (4% to13%) for first group and from (10% to15%) for second and third group. Thus, FPJ at 15% inhibited 100% of bacteria for all tested isolates (MIC100% =15%). Phenolic compounds identified in FPJ were gallic acid, benzoic acid, syringic, folic acid, pelargonidin, naringin+ellagic acid, naringenin, chlorogenic acid, caffeic acid, catechin, myricetin, kaempferol, quercetin, cyanidin-3-glycoside, p-cummaric acid, ferulic acid, and rutin. Total phenolic (TP), total flavonoid (TF), and total anthocyanin (TA) content were 841.5 mg/L, 638.73 mg RE/L, and 47.43 mg/L, accordingly.

Conclusion: Overall, FPJ displayed synergistic effect with R against MDR-TB clinical isolates due to its high content of polyphenol and antioxidant capability.

Keywords: Fresh Pomegranate Juice (FPJ), tuberculosis, synergistic effect, antimicrobial activity, new anti-tuberculosis drugs, MIC.

[1]
Dey, D.; Debnath, S.; Hazra, S.; Ghosh, S.; Ray, R.; Hazra, B. Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrum β-lactamase (ESBL) and metallo-β-lactamase (MBL) producing Gram-negative bacilli. Food Chem. Toxicol., 2012, 50, 4302-4309.
[2]
Jurenka, J. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern. Med. Rev., 2008, 13, 128-144.
[3]
Naz, S.; Siddiqi, R.; Ahmad, S.; Rasool, S.; Sayeed, S. Antibacterial activity directed isolation of compounds from Punica granatum. J. Food Sci., 2007, 72(9), M341-M345.
[4]
AlMatar, M.; Islam, M.; Albari, O.; Var, I.; Köksal, F. Pomegranate as a possible treatment in reducing risk of developing wound healing, obesity, neurodegenerative disorders, and diabetes mellitus. Mini Rev. Med. Chem., 2018, 18(6), 507-526.
[5]
Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf., 2010, 9, 635-654.
[6]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12, 564-582.
[7]
Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol., 2007, 109, 177-206.
[8]
Braga, L.; Shupp, J.; Cummings, C.; Jett, M.; Takahashi, J.; Carmo, L.; Chartone-Souza, E.; Nascimento, A. Pomegranate extract inhibits Staphylococcus aureus growth and subsequent enterotoxin production. J. Ethnopharmacol., 2005, 96, 335-339.
[9]
Al-Zoreky, N. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol., 2009, 134, 244-248.
[10]
Opara, L.U.; Al-Ani, M.R.; Al-Shuaibi, Y.S. Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food Bioprocess Technol., 2009, 2, 315-321.
[11]
Aviram, M.; Volkova, N.; Coleman, R.; Dreher, M.; Reddy, M.K.; Ferreira, D.; Rosenblat, M. Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic: Studies in vivo in atherosclerotic apolipoprotein E-deficient (E0) mice and in vitro in cultured macrophages and lipoproteins. J. Agric. Food Chem., 2008, 56, 1148-1157.
[12]
Shukla, M.; Gupta, K.; Rasheed, Z.; Khan, K.A.; Haqqi, T.M. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition, 2008, 24, 733-743.
[13]
Obeid, K.M.; Saravolatz, L. Tuberculosis: A comprehensive clinical reference. JAMA, 2009, 302, 2488-2489.
[14]
AlMatar, M.; Makky, E.A.; Var, I.; Kayar, B.; Köksal, F. Novel compounds targeting InhA for TB therapy. Pharmacol. Rep., 2018, 70(2), 217-226.
[15]
Raviglione, M.; Marais, B.; Floyd, K.; Lönnroth, K.; Getahun, H.; Migliori, G.B.; Harries, A.D.; Nunn, P.; Lienhardt, C.; Graham, S. Scaling up interventions to achieve global tuberculosis control: Progress and new developments. Lancet, 2012, 379, 1902-1913.
[16]
Dye, C.; Scheele, S.; Dolin, P.; Pathania, V.; Raviglione, M. Consensus statement. Global burden of tuberculosis: Estimated incidence, prevalence, and mortality by in an urban community. Int. J. Tuberc. Lung Dis., 2005, 9, 970-976.
[17]
Diel, R.; Loddenkemper, R.; Zellweger, J.; Sotgiu, G.; D’Ambrosio, L.; Centis, R.; van der Werf, M.; Dara, M.; Detjen, A.; Gondrie, P. Reichman, L.; Blasi, F.; Migliori, G.B.; European Forum for TB Innovation. Old ideas to innovate TB control: Preventive treatment to achieve elimination. Eur. Respir. J., 2013, 42(3), 785-801.
[18]
Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12, 388-404.
[19]
Adami, A.G.; Gallo, J.F.; Pinhata, J.M.W.; Martins, M.C.; Giampaglia, C.M.S.; de Oliveira, R.S. Modified protocol for drug susceptibility testing of MGIT cultures of Mycobacterium tuberculosis by the MGIT 960. Diagn. Microbiol. Infect. Dis., 2017, 87, 108-111.
[20]
Fawole, O.A.; Opara, U.L.; Theron, K.I. Chemical and phytochemical properties and antioxidant activities of three pomegranate cultivars grown in South Africa. Food Bioprocess Technol., 2012, 5, 2934-2940.
[21]
Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MSn. Food Chem., 2011, 127, 807-821.
[22]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64, 555-559.
[23]
Ozgen, M.; Durgaç, C.; Serçe, S.; Kaya, C. Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chem., 2008, 111, 703-706.
[24]
Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem., 2000, 48, 4581-4589.
[25]
Brand-Williams, W.; Cuvelier, M-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol., 1995, 28, 25-30.
[26]
Nathanson, E.; Nunn, P.; Uplekar, M.; Floyd, K.; Jaramillo, E.; Lönnroth, K.; Weil, D.; Raviglione, M. MDR tuberculosis-critical steps for prevention and control. New. Engl. J. Med., 2010, 363, 1050-1058.
[27]
Organization, W.H. Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. 2010 at https://apps.who.int/iris/bitstream/handle/10665/44286/9789241599191_eng.pdf;jsessionid=ABDD1897149415F540E098D0C2E808DE?sequence=1
[28]
Kolyva, A.S.; Karakousis, P.C. Old and new TB drugs: Mechanisms of action and resistance.Understanding Tuberculosis-New Approaches to Fighting Against Drug Resistance; InTech, 2012.
[29]
Heifets, L. Susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J. Med. Microbiol., 2002, 51(1), 11-12.
[30]
Vandal, O.H.; Nathan, C.F.; Ehrt, S. Acid resistance in Mycobacterium tuberculosis. J. Bacteriol., 2009, 191, 4714-4721.
[31]
Dickinson, J.M.; Aber, V.; Mitchison, D. Bactericidal activity of streptomycin, isoniazid, rifampin, ethambutol, and pyrazinamide alone and in combination against Mycobacterium tuberculosis. Am. Rev. Respir. Dis., 1977, 116, 627-635.
[32]
Almeida, D.; Nuermberger, E.; Tasneen, R.; Rosenthal, I.; Tyagi, S.; Williams, K.; Peloquin, C.; Grosset, J. Paradoxical effect of isoniazid on the activity of rifampin-pyrazinamide combination in a mouse model of tuberculosis. Antimicrob. Agents Chemother., 2009, 53, 4178-4184.
[33]
Grosset, J.; Truffot-Pernot, C.; Lacroix, C.; Ji, B. Antagonism between isoniazid and the combination pyrazinamide-rifampin against tuberculosis infection in mice. Antimicrob. Agents Chemother., 1992, 36, 548-551.
[34]
Drusano, G.; Sgambati, N.; Eichas, A.; Brown, D.L.; Kulawy, R.; Louie, A. The combination of rifampin plus moxifloxacin is synergistic for suppression of resistance but antagonistic for cell kill of Mycobacterium tuberculosis as determined in a hollow-fiber infection model. MBio, 2010, 1, e00139-e10.
[35]
Greco, W.R.; Park, H.S.; Rustum, Y.M. Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-β-D-arabinofuranosyl-cytosine. Cancer Res., 1990, 50, 5318-5327.
[36]
Drusano, G.L.; Neely, M.; Van Guilder, M.; Schumitzky, A.; Brown, D.; Fikes, S.; Peloquin, C.; Louie, A. Analysis of combination drug therapy to develop regimens with shortened duration of treatment for tuberculosis. PLoS One, 2014, 9, e101311.
[37]
Piccaro, G.; Giannoni, F.; Filippini, P.; Mustazzolu, A.; Fattorini, L. Activities of drug combinations against Mycobacterium tuberculosis grown in aerobic and hypoxic acidic conditions. Antimicrob. Agents Chemother., 2013, 57, 1428-1433.
[38]
Sacchettini, J.C.; Rubin, E.J.; Freundlich, J.S. Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nat. Rev. Microbiol., 2008, 6(1), 41-52.
[39]
Mitchison, D.; Fourie, P. The near future: Improving the activity of rifamycins and pyrazinamide. Tuberculosis, 2010, 90, 177-181.
[40]
Zhang, Y.; Mitchison, D. The curious characteristics of pyrazinamide: A review. Int. J. Tuberc. Lung Dis., 2003, 7, 6-21.
[41]
Betanzos-Cabrera, G.; Montes-Rubio, P.Y.; Fabela-Illescas, H.E.; Belefant-Miller, H.; Cancino-Diaz, J.C. Antibacterial activity of fresh pomegranate juice against clinical strains of Staphylococcus epidermidis. Food Nutr. Res., 2015, 59, 27620.
[42]
Ferrazzano, G.F.; Scioscia, E.; Sateriale, D.; Pastore, G.; Colicchio, R.; Pagliuca, C.; Cantile, T.; Alcidi, B.; Coda, M.; Ingenito, A. In vitro antibacterial activity of pomegranate juice and peel extracts on cariogenic bacteria. BioMed Res. Int., 2017, 2017, 2152749.
[43]
Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem., 2007, 55, 6300-6308.
[44]
Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem., 2008, 56, 1415-1422.
[45]
Ahn, Y.J.; Lee, C.O.; Kweon, J.H.; Ahn, J.W.; Park, J.H. Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J. Appl. Microbiol., 1998, 84, 439-443.
[46]
Hmid, I.; Elothmani, D.; Hanine, H.; Oukabli, A.; Mehinagic, E. Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco. Arab. J. Chem., 2017, 10, S2675-S2684.
[47]
Artik, N. Determination of phenolic compounds in pomegranate juice by using HPLC. Fruit Process., 1998, 8, 492-499.
[48]
Kosuru, R.Y.; Roy, A.; Das, S.K.; Bera, S. Gallic Acid and gallates in human health and disease: Do mitochondria hold the key to success? Mol. Nutr. Food Res., 2018, 62, 1700699.
[49]
Akhavan, H.; Barzegar, M.; Weidlich, H.; Zimmermann, B.F. Phenolic compounds and antioxidant activity of juices from ten Iranian pomegranate cultivars depend on extraction. J. Chem., 2015, 2015, Article ID 907101, 7.
[50]
Gómez-Caravaca, A.M.; Verardo, V.; Toselli, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Determination of the major phenolic compounds in pomegranate juices by HPLC-DAD-ESI-MS. J. Agric. Food Chem., 2013, 61, 5328-5337.
[51]
Guo, C.; Wei, J.; Yang, J.; Xu, J.; Pang, W.; Jiang, Y. Pomegranate juice is potentially better than apple juice in improving antioxidant function in elderly subjects. Nutr. Res., 2008, 28, 72-77.
[52]
Hasnaoui, N.; Jbir, R.; Mars, M.; Trifi, M.; Kamal-Eldin, A.; Melgarejo, P.; Hernandez, F. Organic acids, sugars, and anthocyanins contents in juices of Tunisian pomegranate fruits. Int. J. Food Prop., 2011, 14, 741-757.
[53]
Çam, M.; Hışıl, Y.; Durmaz, G. Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chem., 2009, 112, 721-726.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2019
Page: [317 - 326]
Pages: 10
DOI: 10.2174/1389201020666190308130343
Price: $58

Article Metrics

PDF: 19
HTML: 3