Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Understanding the Significance of Microwave Radiation for the Graft Copolymerization of Acrylamide on Carboxymethyl Xanthan Gum

Author(s): Hemant R. Badwaik*, Amit Alexander and Kalyani Sakure

Volume 6, Issue 1, 2019

Page: [13 - 22] Pages: 10

DOI: 10.2174/2213335606666190307162901

Abstract

Background: Nowadays, microwave assisted techniques are becoming popular ecofriendly approaches in Green Chemistry. However, to date, no study has reported the microwave assisted graft copolymerization of acrylamide on carboxymethyl xanthan gum backbone.

Objective: The objective of this study was to study the effect of microwave radiations on graft copolymerization of acrylamide on carboxymethyl xanthan gum.

Methods: Carboxymethyl xanthan gum was grafted with acrylamide under microwave irradiation. The grafting process is optimized by varying the amount of carboxymethyl xanthan gum, acrylamide, ammonium persulphate, microwave power and exposure time. The graft copolymer was further characterized and evaluated for its efficacy.

Results: Grafting was successfully optimized for higher grafting efficiency (92.4 %) and grafting (410.5 %) in a short reaction time of 150 s, at 40 times less concentration of ammonium persulphate. The characterization study confirmed the grafting of acrylamide on the hydroxyl group of carboxymethyl xanthan gum backbone.

Conclusion: Microwave radiations play a vital role in graft copolymerization of acrylamide on carboxymethyl xanthan gum, in short reaction time, at 40 times less concentration of initiator. The synthesized graft copolymers remain nontoxic and also showed more antimicrobial activity than carboxymethyl xanthan gum.

Keywords: Carboxymethyl xanthan gum, microwave-assisted, microwave, microwave radiation, copolymerization of acrylamide, antimicrobial activity.

Graphical Abstract
[1]
Arimura, T.; Omagari, Y.; Yamamoto, K.; Kadokawa, J. Chemoenzymatic synthesis and hydrogelation of amylose-grafted xanthan gums. Int. J. Biol. Macromol., 2011, 49, 498-503.
[2]
Badwaik, H.R.; Giri, T.K.; Nakhate, K.T.; Kashyap, P.; Tripathi, D.K. Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system. Curr. Drug Deliv., 2013, 10, 587-600.
[3]
Daskalakis, S.A. Xanthan gum.In: Handbookof pharmaceutical excipients; Wade, A.; Weller, P.J., Ed.;. The pharmaceutical press: Landon,, 1994, pp. 562-563.
[4]
Katzbauer, B. Properties and applications of xanthan gum. Polym. Degrad. Stabil., 1998, 59, 81-84.
[5]
Verma, V.S.; Sakure, K.; Badwaik, H.R. Xanthan gum a versatile biopolymer: current status and future prospectus in hydro gel drug delivery. Curr. Chem. Biol., 2017, 11, 10-20.
[6]
Ahuja, M.; Kumar, A.; Singh, K. Synthesis characterization and in vitro release behaviour of carboxymethyl xanthan. Int. J. Biol. Macromol., 2012, 5, 1086-1090.
[7]
Badwaik, H.R.; Sakure, K.; Nakhate, K.T.; Dhongde, H.; Kashyap, P.; Tripathi, D.K. Microwave assisted eco-friendly synthesis, characterization and in vitro release behavior of carboxymethyl xanthan gum. Curr. Microw. Chem., 2016, 3, 203-211.
[8]
Badwaik, H.R.; Sakure, K.; Alexander, A. Ajazuddin; Dhongde, H.; Tripathi, D.K. Synthesis and characterization of poly(acrylamide) grafted carboxymethyl xanthan gum copolymer. Int. J. Biol. Macromol., 2016, 85, 361-369.
[9]
Sen, G.; Kumar, R.; Ghosh, S.; Pal, S. A novel polymeric flocculant based on polyacrtlamide grafted carboxymethyl starch. Carbohydr. Polym., 2009, 77, 822-831.
[10]
Badwaik, H.R.; Thakur, D.; Sakure, K.; Giri, T.K.; Nakhate, K.T.; Tripathi, D.K. Microwave assisted synthesis of polyacrylamide grafted guar gum and its application as flocculent for waste water treatment. Res. J. Pharm. Tech, 2014, 7, 401-407.
[11]
Giri, T.K.; Verma, P.; Tripathi, D.K. Grafing of vinyl monomer onto gellan gum using microwave: synthesis and charecterization of grafted copolymer. Adv. Compos. Mater., 2015, 24, 531-543.
[12]
Giri, T.K.; Yadav, B.; Badwaik, H.R. Synthesis and characterization of gellan gum based bioadsorbent for wastewater treatment. Curr. Microw. Chem., 2018, 2, 84-96.
[13]
Kumar, A.; Singh, K.; Ahuja, M. Xanthan gum-g-poly (acrylamide): Microwave-assisted synthesis, characterization and in vitro release behaviour. Carbohydr. Polym., 2009, 7, 261-267.
[14]
Tiwari, A.; Singh, V. Microwave-induced synthesis of electrical conducting gum acacia-graft-polyaniline. Carbohydr. Polym., 2008, 74, 427-434.
[15]
Singh, V.; Tripathi, D.N.; Tiwari, A.; Sanghi, R. Microwave synthesized chitosan-graft-poly(methylmethacrylate): An efficient Zn2+ ion binder. Carbohydr. Polym., 2006, 65, 35-41.
[16]
Singh, V.; Tiwari, A.; Tripathi, D.; Sanghi, R. Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer, 2006, 47, 254-260.
[17]
Huacai, G.; Wan, P.; Dengke, L. Graft copolymerisation of chitosan with acrylic acid under microwave irradiation and its water absorbancy. Carbohydr. Polym., 2006, 66, 372-378.
[18]
Singh, V.; Tiwari, A.; Pandey, S.; Singh, S.A. Microwave-accelerated synthesis and characterization of potato starch-g-poly (acrylamide). Starch-Stärke, 2006, 58, 536-543.
[19]
Rani, P.; Sen, G.; Mishra, S.; Jha, U. Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr. Polym., 2012, 89, 275-281.
[20]
Sand, A.; Yadav, M.; Mishra, M.M.; Tripathy, J.; Behari, K. Studies on graft copolymerization of 2-acrylamidoglycolic acid on to partially carboxymetylated guar gum and physic-chemical properties. Carbohydr. Polym., 2011, 83, 14-21.
[21]
Pal, S.; Ghorai, S.; Dash, M.K.; Ghosh, S.; Udayabhanu, G. Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method. J. Hazard. Mater., 2011, 192, 1580-1588.
[22]
Mishra, S.; Rani, U.; Sen, G. Microwave initiated synthesis and application of polyacrylic acid grafted carboxymethyl cellulose. Carbohydr. Polym., 2012, 87, 2255-2262.
[23]
Yang, F.; Li, G.; He, Y.; Ren, F.; Wang, G. Synthesis, charecterization, and applied properties of carboxymerthyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym., 2009, 78, 95-99.
[24]
Liu, B.; Wang, X.; Yang, B.; Sun, R. Microwave-assisted synthesis of quaternizedcarboxymethyl chitosan in aqueous solution and its thermal behaviour. J. Macromol. Sci. Pure Appl. Chem, 2012, 49, 227-234.
[25]
Sen, G.; Pal, S. Microwave initiated synthesis of polyacrylamide grafted carboxymrthyl starch (CMS-g-PAM): Application as a novel matrix for sustained drug release. Int. J. Biol. Macromol., 2009, 45, 48-55.
[26]
Shah, S.B.; Patel, C.P.; Trivedi, H.C. Ceric-induced grafting of acrylonitrile onto sodium alginate. High Perform. Polym., 1992, 4, 151-159.
[27]
Biswal, D.R.; Singh, R.P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym., 2004, 57, 379-387.
[28]
da Silva, D.A.; de Paula, R.C.M.; Feitosa, J.P.A. Graft copolymerisation of acrylamide onto cashew gum. Eur. Polym. J., 2007, 43, 2620-2629.
[29]
Gri, T.K.; Thakur, D.; Alexander, A. Ajazuddin; Badwaik, H.; Tripathy, M.; Tripathi, D.K. Biodegradable IPN hydrogel beads of pectin and grafted alginate for controlled delivery of diclofenac sodium. J. Mater. Sci. Mater. Med., 2013, 24, 1179-1190.
[30]
Badwaik, H.R.; Sakure, K.; Nakhate, K.T.; Kashayap, P.; Dhongde, H.; Alexander, A. Ajazuddin; Tripathi, D.K. Effect of Ca+2 ion on the release of diltiazem hydrochloride from matrix tablets of carboxymethyl xanthan gum graft polyacrylamide. Int. J. Biol. Macromol., 2017, 94, 691-697.
[31]
Bajpai, S.K.; Chand, N.; Agrawal, A. Microwave-assisted synthesis of carboxymethylpsllium and its development as semi-interpenetrating network with poly(acrylamide) for gastric delivery. J. Bioact. Compat. Polym., 2015, 30, 241-257.

© 2024 Bentham Science Publishers | Privacy Policy