Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Application of Sugar-Base Anhydro Bridge for Modification of Nucleosides in the 2’- and/or 3’-Positions - Revisited

Author(s): Maurycy Szlenkier* and Jerzy Boryski

Volume 23, Issue 4, 2019

Page: [409 - 438] Pages: 30

DOI: 10.2174/1385272823666190306155919

Price: $65

Abstract

The nucleosides modified in the 2’- and/or 3’-position have been known for years and include important, bioactive compounds such as zidovudine, cytarabine, didanosine, puromycin, and fludarabine. This group consists of analogs with altered configuration, 2’,3’-dideoxy and 2’,3’-dideoxy-didehydro nucleosides, as well as derivatives with additional substituents. These compounds are often targeted against viruses and tumors. The sugar-base anhydro nucleosides have been known since the middle of the 20th century. However, their application has not yet been fully explored and described. The number of 2’,3’-dimodified derivatives, obtainable through sugar-base anhydrocyclic synthons, could be vast, especially taking into consideration various combinations of S-alkyl, S-aryl, O-alkyl, O-aryl, halogen, triazole, amine and azide substituents in both pyrimidine and purine nucleosides. Furthermore, application of anhydrocyclic structures can be an efficient method of introducing isotope labeled groups. The aim of this article is to provide an overview of the known methods of functionalization of the 2’- and/or 3’-position of nucleosides, using anhydrocyclic structures, and also to present a future outlook for this subject.

Keywords: Anhydro nucleosides, modified nucleosides, xylofuranosides, arabinofuranosides, deoxyribosides, SN2 substitution.

Graphical Abstract
[1]
Warren, T.K.; Wells, J.; Panchal, R.G.; Stuthman, K.S.; Garza, N.L.; Van Tongeren, S.A.; Dong, L.; Retterer, C.J.; Eaton, B.P.; Pegoraro, G.; Honnold, S.; Bantia, S.; Kotian, P.; Chen, X.; Taubenheim, B.R.; Welch, L.S.; Minning, D.M.; Babu, Y.S.; Sheridan, W.P.; Bavari, S. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature, 2014, 508, 402-405.
[2]
Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem. Rev., 2016, 116, 14379-14455.
[3]
De Clercq, E.; Neyts, J. Antiviral agents acting as DNA or RNA chain terminators. Handb. Exp. Pharmacol., 2009, 189, 53-84.
[4]
Menga, W-D.; Qing, F-L. Fluorinated nucleosides as antiviral and antitumor agents. Curr. Top. Med. Chem., 2006, 6, 1499-1528.
[5]
Shakya, N.; Srivastav, M.C.; Desroches, N.; Agrawal, B.; Kunimoto, D.Y.; Kumar, R. 3′-bromo analogues of pyrimidine nucleosides as a new class of potent inhibitors of mycobacterium tuberculosis. J. Med. Chem., 2010, 53, 4130-4140.
[6]
Srivastav, N.C.; Shakya, N.; Mak, M.; Agraval, B.; Tyrell, D.L.; Kumar, R. Antiviral activity of various 1-(2′-deoxy-β-D-lyxofuranosyl), 1-(2′-fluoro-β-D-xylofuranosyl), 1-(3′-fluoro-β-D-arabino-furanosyl), and 2′-fluoro-2′,3′-didehydro-2′,3′-dideoxyribose pyrimidine nucleoside analogues against duck hepatitis b virus (dhbv) and human hepatitis b virus (hbv) replication. J. Med. Chem., 2010, 53, 7156-7166.
[7]
Gosselin, G.; Bergogne, M.C.; De Rudder, J.; De Clercq, E.; Imbach, J.L. Systematic synthesis and biological evaluation of. alpha.- and. beta.-D-xylofuranosyl nucleosides of the five naturally occurring bases in nucleic acids and related analogs. J. Med. Chem., 1986, 29, 2 203-213.
[8]
Brown, D.M.; Todd, A.; Varadarajan, S. Nucleotides. Part XXXVII. The structure of uridylic acids a and b, and a synthesis of spongouridine (3-β-D-arabinofuranosyluracil). J. Chem. Soc., 1956, 2388-2392.
[9]
Czernecki, S.; Valéry, J.M. An efficient synthesis of 3′-azido-3′-deoxythymidine (AZT). Synthesi., 1991, 3, 239-240.
[10]
Dai, Q.; Frederiksen, J.F.; Anderson, V.E.; Harris, M.E.; Piccirilli, J.A. Efficient synthesis of [2′-18O] uridine and its incorporation into oligonucleotides: a new tool for mechanistic study of nucleotidyl transfer reactions by isotope effect analysis. J. Org. Chem., 2008, 73, 309-311.
[11]
Ikehara, M.; Ogiso, Y. Studies of nucleosides and nucleotides – liv, purine cyclonucleosides – 19. further investigations on the cleavage of the 8,2′-o-anhydro linkage. a new synthesis of 9-β-D-arabinofuranosyladenine. Tetrahedron, 1972, 28, 3695-3704.
[12]
Lin, K.; Chiang, L.; Wu, C.; Chen, S.; Yu, C. Synthesis of 5-radioiodoarabinosyl uridine analog for probing the HSV-1 thymidine kinase gene. J. Chin. Chem. Soc., 2007, 54, 563-568.
[13]
Pierra, C.; Amador, A.; Badaroux, E.; Storer, R.; Gosselin, G. Synthesis of 2′-C-methylcytidine and 2′-C-methyluridine derivatives modified in 3′-position as potential antiviral agents. Collect. Czech. Chem. Commun., 2006, 71, 991-1010.
[14]
Hampton, A.; Nichol, A.W. Nucleotides, V. Purine ribonucleoside 2′,3′-cyclic carbonates. Preparation and use for the synthesis of 5′-monosubstituted nucleosides. Biochemistry, 1966, 5, 2076-2082.
[15]
Dai, Q.; Piccirilli, J.A. Efficient synthesis of 2′,3′-dideoxy-2′-amino-3′-thiouridine. Org. Lett., 2004, 6, 2169-2172.
[16]
Kamaike, K.; Uemura, F.; Yamakage, S.; Nishino, S.; Ishido, Y. Partial protection of carbohydrate derivatives. part 23.1 simple, efficient procedure for the preparation of 3′- and 2′-o-(tetrahydropyran-2-yl) ribonucleoside derivatives involving highly regioselective 2′,5′-di-o-acylation or that followed by acyl migration on silica gel and subsequent o-(tetrahydropyran-2-yl)ation. Nucleosides Nucleotides, 1987, 6, 699-736.
[17]
Hakimelahi, G.H.; Proba, Z.A.; Ogilvie, K.K. Nitrate ion as catalyst for selective silylations of nucleosides. Tetrahedron Lett., 1981, 22, 4775-4778.
[18]
Roy, S.K.; Tang, J-Y. Efficient large scale synthesis of 2′-O-alkyl pyrimidine ribonucleosides. Org. Process Res. Dev., 2000, 4, 170-171.
[19]
Szlenkier, M.; Kamel, K.; Boryski, J. Regioselective mitsunobu reaction of partially protected uridine. Nucleosides Nucleotides Nucleic Acids, 2016, 35, 410-425.
[20]
Codington, J.F.; Fecher, R.; Fox, J.J. Pyrimidine nucleosides. vii. reactions of 2′,3′,5′-trimesyloxyuridine. J. Am. Chem. Soc., 1960, 82, 2794-2803.
[21]
Fecher, R.; Codington, J.F.; Fox, J.J. Pyrimidine nucleosides. ix. facile synthesis of 1-β-d-lyxofuranosyluracil via 2,3′-anhydrolyxosyl intermediates. J. Am. Chem. Soc., 1961, 83, 1889-1895.
[22]
Ogilvie, K.K.; Iwacha, D. Conversion of uridine 2′,3′-carbonates to anhydrouridines. Can. J. Chem., 1969, 47, 495-497.
[23]
Fox, J.J.; Wempen, I. Nucleosides XXVI. A facile synthesis of 2,2′-anhydroarabino pyrimidine nucleosides. Tetrahedron Lett., 1965, 6, 643-646.
[24]
Ruyle, W.V.; Shen, T.Y.; Patchett, A.A. Nucleosides. II. reactions of 5′-trityluridine 2′,3′-o-thionocarbonate. J. Org. Chem., 1965, 30, 4353-4355.
[25]
Doerr, I.L.; Codington, J.F.; Fox, J.J. Nucleosides. XXXV. 1-β-D-Arabinofuranosyl-5-methylcytosine. J. Med. Chem., 1967, 10, 247-248.
[26]
Letters, R.; Michelson, A.M. o-2,3′-cyclouridine. J. Chem. Soc., 1961, 1401.
[27]
Yung, N.C.; Fox, J.J. Nucleosides. X. anhydronucleosides and related compounds derived from 2′,5′-di-o-trityluridine. J. Am. Chem. Soc., 1961, 83, 3060-3066.
[28]
Michelson, A.M.; Todd, A. Deoxyribonucleosides and related compounds 5. cyclotymidines and other thymidine derivatives – the configuration at the glycosidic centre in thymidine. J. Chem. Soc., 1955, 816-822.
[29]
Fox, J.J.; Miller, N.C. Nucleosides. xvi. further studies of anhydronucleosides. J. Org. Chem., 1963, 28, 936-941.
[30]
Miller, N.C.; Fox, J.J. Nucleosides. XXI. Synthesis of some 3′-substituted 2′,3′-dideoxyribonucleosides of thymine and 5-methylcytosine. J. Org. Chem., 1964, 29, 1772-1776.
[31]
Pankiewicz, K.W.; Watanabe, K.A. Nucleosides. cxliv. some reactions of 2′-o-triflyl-2,3′-anhydroxylosyluracil with nucleophilic reagents. synthesis of 2′-chloro-2′,3′-dideoxyuridinene. studies directed toward the synthesis of 2′-deoxy-2′-substituted arabino nucleosides. Chem. Pharm. Bull., 1987, 35, 4498-4502.
[32]
Secrist, III, J.A. A convenient procedure for formation of certain uracil and thymine anhydronucleosides. Carbohydr. Res., 1975, 42, 379-381.
[33]
Hakimelahi, G.H.; Proba, Z.A.; Ogilvie, K.K. New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can. J. Chem., 1982, 60, 1106-1113.
[34]
McGee, D.P.; Vaughn-Settle, A.; Vargeese, C.; Zhai, Y. 2′-amino-2′-deoxyuridine via an intramolecular cyclization of a trichloroacetimidate. J. Org. Chem., 1996, 61, 781-785.
[35]
Kanai, T.; Ichino, M. Some phosphate esters of cyclocytidine and aracytidine. Tetrahedron Lett., 1971, 22, 1965-1968.
[36]
Kanai, T.; Ichino, M.; Hoshi, A.; Kanzawa, F.; Kuretani, K. Pyrimidine nucleosides. 6. Synthesis and anticancer activities of N4-substituted 2,2′-anhydronucleosides. J. Med. Chem., 1974, 17, 1076-1078.
[37]
Meyer, J-P.; Probst, K.C.; Trist, I.M.; McGuigan, C.; Westwell, A.D. A novel radiochemical approach to 1-(2′-deoxy-2′-[18F] fluoro-β-D-arabinofuranosyl)cytosine (18F-FAC). J. Labelled Comp. Radiopharm., 2014, 57, 637-644.
[38]
Nagyvary, J. Arabinonucleotides. II. synthesis of O2,2′-anhydrocytidine 3′-phosphate, a precursor of 1-β-D-arabinosylcytosine. J. Am. Chem. Soc., 1969, 91, 5409-5410.
[39]
Sowa, T.; Tsunoda, K. The convenient synthesis of anhydronucleosides via the 2′,3′-o-sulfinate of pyrimidine nucleosides as the active intermediates. Bull. Chem. Soc. Jpn., 1975, 48, 505-507.
[40]
Kondo, K.; Inoue, I. Studies on biologically active nucleosides and nucleotides. 2. A convenient one-step synthesis of 2,2′-anhydro-1-(3′,5′-di-O-acyl-β-D-arabinofuranosyl)pyrimidines from pyrimidine ribonucleosides. J. Org. Chem., 1977, 42, 2809-2812.
[41]
Shang, P.; Wang, H.; Cheng, C.; Zheng, H.; Zhao, Y. Study on disulfur-backboned nucleic acids: Part 3. Efficient Synthesis of 3′,5′-Dithio-2′-Deoxyuridine and Deoxycytidine. Nucleosides Nucleotides Nucleic Acids, 2008, 27, 1272-1281.
[42]
Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis, 1981, 1, 1-28.
[43]
Varasi, M.; Walker, K.A.M.; Maddox, M.L. A revised mechanism for the mitsunobu reaction. J. Org. Chem., 1987, 52, 4235-4238.
[44]
Camp, D.; Hanson, G.R.; Jenkins, I.D. Formation of radicals in the mitsunobu reaction. J. Org. Chem., 1995, 60, 2977-2980.
[45]
But, T.Y.S.; Toy, P.H. The mitsunobu reaction: origin, mechanism, improvements, and applications. Chem. Asian J., 2007, 2, 1340-1355.
[46]
Eisenhuth, R.; Richert, C. Convenient syntheses of 3′-amino-2′,3′-dideoxynucleosides, their 5′-monophosphates, and 3′-aminoterminal oligodeoxynucleotide primers. J. Org. Chem., 2009, 74, 26-37.
[47]
Czernecki, S.; Valéry, J-M. One-step conversion of thymidine into 2,3′-anhydro derivatives. J. Chem. Soc. Chem. Commun., 1990, 11, 801-802.
[48]
Legorburu, U.; Reese, C.B.; Song, Q. Conversion of uridine into 2′-O-(2-methoxyethyl) uridine and 2′-O-(2-methoxyethyl)cytidine. Tetrahedron, 1999, 55, 5635-5640.
[49]
Rahman, A.A-H.; Wada, T.; Saigo, K. Facile methods for the synthesis of 5-formylcytidine. Tetrahedron Lett., 2001, 42, 1061-1063.
[50]
Mizuno, Y.; Sasaki, T. The synthesis of dinucleoside phosphates of natural linkages by the “anhydronucleoside method”. Tetrahedron Lett., 1965, 50, 4579-4584.
[51]
Clark, V.M.; Todd, A.R.; Zussman, J. 655. Nucleotides. Part VIII. cycloNucleoside salts. A novel rearrangement of some toluene-p-sulphonylnucleosides. J. Chem. Soc., 1951, 2952-2958.
[52]
Ikehara, M.; Tada, H. A new type of “cyclonucleoside” derived from 2-chloro-8-mercapto-9-β-D-xylofuranosyladenine. J. Am. Chem. Soc., 1963, 85, 2344-2345.
[53]
Ikehara, M.; Tada, H.; Muneyama, K.; Kaneko, M. Synthesis of purine cyclonucleoside having a 8,2′-o-anhydro linkage. J. Am. Chem. Soc., 1966, 88, 3165-3167.
[54]
Holmes, R.E.; Robins, R.K. Purine nucleosides. vii. direct bromination of adenosine, deoxyadenosine, guanosine, and related purine nucleosides. J. Am. Chem. Soc., 1964, 86, 1242-1244.
[55]
Mizuno, H.; Kitamura, K.; Miyao, A.; Yamagata, Y.; Wakahara, A.; Tomita, K.; Ikehara, M. The structure of 8-thioxoadenosine monohydrate. Acta Crystallogr. B, 1980, 36, 902-905.
[56]
Ikehara, M. Purine 8-cyclonucleosides. Acc. Chem. Res., 1969, 2, 47-53.
[57]
Ikehara, M.; Kaneko, M. Studies of nucleosides and nucleotides – xli, purine cyclonucleosides – 8, selective sulfonylation of 8-bromoadenosine derivatives and an alternate synthesis of 8,2′- and 8,3′-s-cyclonucleosides. Tetrahedron, 1970, 26, 4251-4259.
[58]
Ikehara, M.; Tada, H. Studies of nucleosides and nucleotides. xxxii. purine cyclonucleosides. 3. synthesis of 2′-deoxy- and 3′-deoxyadenosine from adenosine. Chem. Pharm. Bull., 1967, 15, 94-100.
[59]
Ikehara, M.; Kaneko, M. Studies of nucleosides and nucleotides. xliv. purine cyclonucleosides. (2). synthesis of cyclonucleosides having 8,3′-o- and -s-anhydro linkage derived from 2′-deoxyadenosine. Chem. Pharm. Bull., 1970, 18, 2441-2446.
[60]
Ikehara, M.; Tezuka, S. Synthesis of adenine 8,2′-cyclonucleosides using diphenyl carbonate. Tetrahedron Lett., 1972, 13, 1169-1170.
[61]
Ikehara, M.; Maruyama, T. Studies of nucleosides and nucleotides – lxv, purine cyclonucleosides – 26, a versatile method for the synthesis of purine o-cyclo-nucleosides. The first synthesis of 8,2′-anhydro-8-oxy-9-β-D-arabinofuranosylguanine. Tetrahedron, 1975, 31, 1369-1372.
[62]
Wagner, D.; Verheyden, J.P.; Moffatt, J.G. Preparation and synthetic utility of some organotin derivatives of nucleosides. J. Org. Chem., 1974, 39, 24-30.
[63]
Sowa, T.; Tsunoda, K. Novel synthesis of anhydronucleosides via the 2′,3′-o-sulfinate of purine nucleosides as intermediates. Bull. Chem. Soc. Jpn., 1975, 48, 3243-3245.
[64]
Ogilvie, K.K.; Slotin, L.; Westmore, J.B.; Lin, D. Synthesis of 8,2′-thioanhydroguanosine. Can. J. Chem., 1972, 50, 1100-1104.
[65]
Ogilvie, K.K.; Slotin, L.; Westmore, J.B.; Lin, D. A general synthesis of 8,2′-thioanhydropurine nucleosides. Can. J. Chem., 1972, 50, 2249-2253.
[66]
Ogilvie, K.K.; Slotin, L.A.; Lin, D.C.; Westmore, J.B. Synthesis of 8,3′-thioanhydroguanosine. Can. J. Chem., 1972, 50, 3276-3279.
[67]
Ogilvie, K.K.; Slotin, L.A.; Westmore, J.B.; Lin, D.C. Synthesis of 8,2′-cyclopurinenucleosides. J. Het. Chem., 1972, 9, 1179-1180.
[68]
Miah, A.; Reese, C.B.; Song, Q.; Sturdy, Z.; Neidle, S.; Simpson, I.J.; Read, M.; Rayner, E. 2’,3’-anhydrouridine. a useful synthetic intermediate. J. Chem. Soc. Perkin Trans., I, 1998, 9, 3277-3283.
[69]
Chattopadhyaya, J.B.; Reese, C.B. Interconversion of 8,2′-o-cycloadenosine and 2′,3′-anhydro-8-oxyadenosine. J. Chem. Soc. Chem. Commun., 1976, 21, 860-862.
[70]
Codington, J.F.; Fecher, R.; Fox, J.J. Nucleosides. XIII. Synthesis of 3′-amino-3′-deoxyarabinosyluracil via 2′,3′-epoxylyxosyl nucleosides. J. Org. Chem., 1962, 27, 163-167.
[71]
Webb, T.R.; Mitsuya, H.; Broder, S. 1-(2,3-anhydro-β-D-lyxofuranosyl)cytosine derivatives as potential inhibitors of the human immunodeficiency virus. J. Med. Chem., 1988, 31, 1475-1479.
[72]
Greenberg, S.; Moffatt, J.G. Reactions of 2-acyloxyisobutyryl halides with nucleosides. i. reactions of model diols and of uridine. J. Am. Chem. Soc., 1973, 95, 4016-4025.
[73]
Russell, A.F.; Greenberg, S.; Moffatt, J.G. Reactions of 2-acyloxyisobutyryl halides with nucleosides. II. Reactions of adenosine. J. Am. Chem. Soc., 1973, 95, 4025-4030.
[74]
Robins, M.J.; Hansske, F.; Low, N.H.; Park, J.I. A mild conversion of vicinal diols to alkenes. Efficient transformation of ribonucleosides into 2′-ene and 2′,3′-dideoxynucleosides. Tetrahedron Lett., 1984, 25, 367-370.
[75]
Robins, M.J.; Wilson, J.S.; Madej, D.; Low, N.H.; Hansske, F.; Wnuk, S.F. Nucleic Acid-Related Compounds. 88. Efficient Conversions of Ribonucleosides into Their 2′,3′-Anhydro, 2‘(and 3’)-Deoxy, 2′,3′-Didehydro-2′,3′-dideoxy, and 2′,3′-Dideoxy-nucleoside Analogs. J. Org. Chem., 1995, 60, 7902-7908.
[76]
Mattocks, A.R. Novel reactions of some α-acyloxy acid chlorides. J. Chem. Soc., 1964, 1918-1930.
[77]
Akhrem, A.A.; Zaitseva, G.V.; Kalinitchenko, E.M.; Mikhailopulo, I.A. Modified nucleosides. lx. the interaction of acetylsalicyloyl chloride with adenosine, inosine, uridine, and 5-bromouridine. Russ. J. Bioorganic Chem., 1976, 2, 1325-1337.
[78]
Reichman, U.; Chu, C.K.; Hollenberg, D.H.; Watanabe, K.A.; Fox, J.J. Nucleosides XCIX. 2-Acetoxybenzoyl Chloride, A Reagent for the Direct Synthesis of 2,2′-Anhydro-pyrimidine nucleosides. Synthesis, 1976, 8, 533-534.
[79]
Chu, C.K.; Reichman, U.; Watanabe, K.A.; Fox, J.J. Nucleosides. 107. Synthesis of 5-(β-D-arabinofuranosyl)isocytosine and related C-nucleosides. J. Med. Chem., 1978, 21, 96-100.
[80]
Ogilvie, K.K.; McGee, D.P.; Boisvert, S.M.; Hakimelahi, G.H.; Proba, Z.A. The preparation of protected arabinonucleosides. Can. J. Chem., 1983, 61, 1204-1212.
[81]
Brown, D.M.; Parihar, D.B.; Todd, A.; Varadarajan, S. Deoxynucleosides and related compounds. Part VI. The synthesis of 2-thiouridine and of 3′-deoxyuridine. J. Chem. Soc., 1958, 3028-3035.
[82]
Màrton-Merész, M.; Kuszmann, J.; Pelczer, I.; Pàrkànyi, L.; Koritsànszky, T.; Kàlmàn, A. Synthesis and reactions of 2′,3′-anhydro-1-β-D-ribofuranosyl-uracil derivatives: molecular structures of 3-methyl-2′,3′-anhydrouridine and 3,5-dimethyl-2′,3′:O6,5′-dianhydrouridine. Tetrahedron, 1983, 39, 275-284.
[83]
Fox, J.J. Pyrimidine nucleoside transformations via anhydronucleosides. Pure Appl. Chem., 1969, 18, 233-255.
[84]
Moffat, J.G. Chemical Trasformations of the Sugar Moiety of Nucleosides.In Nucleosides Analogues. Chemistry, Biology, and Medicinal Applications; Walker, R.T.; De Clercq, E., Eds.; Eckstein Plenum Press: New York, 1979, Vol. 26, pp. 71-164.
[85]
Ueda, T. Synthesis and Reaction of Pyrimidine Nucleosides, In:. Chemistry of Nucleosides and Nucleotides,, 1st ed.; Townsend, L. B.; Plenum Press: New York and London, 1988, pp 1-112.
[86]
Ross, B.S.; Springer, R.H.; Tortorici, Z.; Dimock, S. A novel and economical synthesis of 2′-o-alkyl-uridines. Nucleosides Nucleotides, 1997, 16, 1641-1643.
[87]
Buchanan, J.G.; Clark, D.R. Studies on the interconversion of 2,3′-anhydro-1-β-D-xylofuranosyluracil and 2,2′-anhydro-1-β-D-arabinofuranosyluracil. Carbohydr. Res., 1979, 68, 331-341.
[88]
Hirata, M. Studies on nucleosides and nucleotides. x. nucleophilic substitution of secondary sulfonyloxy groups of pyrimidine nucleosides. iii. reaction of 2′,3′-di-o-tosyluridine with methanolic ammonia. Chem. Pharm. Bull., 1968, 16, 430-436.
[89]
Brown, D.M.; Todd, A.R.; Varadarajan, S. 165. Nucleotides. Part XL. O2 : 5′-cyclouridine and a synthesis of isocytidine. J. Chem. Soc., 1957, 868-872.
[90]
Staudinger, H.; Meyer, J. über neue organische phosphorverbindungen iii. phosphinmethylenderivate und phosphinimine. Helv. Chim. Acta, 1919, 2, 635-646.
[91]
Tian, W.Q.; Wang, Y.A. Mechanisms of staudinger reactions within density functional theory. J. Org. Chem., 2004, 69, 4299-4308.
[92]
McGee, D.P.; Vaughn-Settle, A. Novel intramolecular introduction of nucleophiles to 2,2′-anhydrouridine. Nucleosides Nucleotides, 1997, 16, 1095-1097.
[93]
Gondela, A.; Tomczyk, M.D.; Przypis, L.; Walczak, K.Z. Versatile synthesis of 2′-amino-2′-deoxyuridine derivatives with a 2′-amino group carrying linkers possessing a reactive terminal functionality. Tetrahedron, 2016, 72, 5626-5632.
[94]
Hirata, M. Studies on nucleosides and nucleotides. ix. nucleophilic substitution of secondary sulfonyloxy groups of pyrimidine nucleosides. ii. reaction of 2,2′-anhydro-1-(3′-o-tosyl-β-D-arabinofuranosyl)uracil with sodium bromide, sodium ethanethiol, and sodium azide. Chem. Pharm. Bull., 1967, 16, 291-295.
[95]
Patel, A.D.; Schrier, W.H.; Nagyvary, J. Synthesis and properties of 2′-deoxy-2′-thiocytidine. J. Org. Chem., 1980, 45, 4830-4834.
[96]
Mengel, R.; Guschlbauer, W. A simple synthesis of 2′‐deoxy‐2′‐fluorocytidine by nucleophilic substitution of 2,2′‐anhydrocytidine with potassium fluoride/crown ether. Angew. Chem. Int. Ed. Engl., 1978, 17, 525-525.
[97]
Kikugawa, K.; Ukita, U. Reaction of hydrogen halides on 2, 3′-anhydro-1-(β-d-xylofuranosyl) uracil. Chem. Pharm. Bull., 1969, 17, 775-784.
[98]
Kikugawa, K.; Ichino, M.; Kusama, T.; Ukita, T. Syntheses of 1-(5′-amino-5′-deoxy-β-d-xylofuranosyl) uracil and its n3-methyl derivative. Chem. Pharm. Bull., 1969, 17, 798-803.
[99]
Kowollik, G.; Gaertner, K.; Langen, P. Nucleosides of fluorocarbohydrates. 13. synthesis of 3′-deoxy-3′-fluorouridine. J. Carbohydr. Nucleos. Nucleot., 1975, 2, 191-195.
[100]
Ikehara, M.; Imura, J. Studies on nucleosides and nucleotides. lxxxvii. purine cyclonucleosides. xlii. synthesis of 2′-deoxy-2′-fluoroguanosine. Chem. Pharm. Bull., 1981, 29, 4 1034-1038.
[101]
Torii, T.; Onishi, T.; Izawa, K.; Maruyama, T. A concise synthesis of 3′-α-fluoro-2′,3′-dideoxyguanosine (fddg) via 3′-α-selective fluorination of 8,2′-thioanhydronucleoside. Tetrahedron Lett., 2006, 47, 6139-6141.
[102]
Ikehara, M.; Maruyama, T.; Miki, H.; Takatsuka, Y. Studies of nucleosides and nucleotides. lxxxv. purine cyclonucleosides. (35). synthesis of purine nucleosides having 2′-azido and 2′-amino functions by cleavage of purine cyclonucleosides. Chem. Pharm. Bull., 1977, 25, 754-760.
[103]
Anderson, J.M.; Percival, E. 175. The ammonolysis of methyl 2: 3-anhydro-D-furanosides. part ii. methyl 2: 3-anhydro-5-o-methyl-α- and -β-D-lyxofuranosides. J. Chem. Soc., 1956, 819-823.
[104]
Sun, J.; Duan, R.; Li, H.; Wu, J. synthesis and anti-hiv activity of triazolo-fused 2′,3′-cyclic nucleoside analogs prepared by an intramolecular huisgen 1,3-dipolar cycloaddition. Helv. Chim. Acta, 2013, 96, 59-68.
[105]
Mete, A.; Hobbs, J.B. Novel nucleoside analogues via direct attack of carbon : nucleophiles on nucleosides containing epoxy-sugars. Tetrahedron Lett., 1985, 26, 97-100.
[106]
Ariza, X.; Garces, J.; Vilarrasa, J. Azide- or fluorine-containing 2′ & 3′-azolyluridines by regioselective opening of 1-(2′,3′-anhydro-β-D-lyxofuranosyl)uracils. Tetrahedron Lett., 1992, 33, 4069-4072.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy