Protein/ Hormone Based Nanoparticles as Carriers for Drugs Targeting Protein-Protein Interactions

Author(s): Ebtesam Al-Suhaimi* , Vijaya Ravinayagam , B. Rabindran Jermy , Tarhini Mohamad , Abdelhamid Elaissari .

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: In this review, protein-protein interactions (PPIs) were defined, and their behaviors in normal in disease conditions are discussed. Their status at nuclear, molecular and cellular level was underscored, as for their interference in many diseases. Finally, the use of protein nanoscale structures as possible carriers for drugs targeting PPIs was highlighted.

Objective: The objective of this review is to suggest a novel approach for targeting PPIs. By using protein nanospheres and nanocapsules, a promising field of study can be emerged.

Methods: To solidify this argument, PPIs and their biological significance was discussed, same as their role in hormone signaling.

Results: We shed the light on the drugs that targets PPI and we suggested the use of nanovectors to encapsulate these drugs to possibly achieve better results.

Conclusion: Protein based nanoparticles, due to their advantages, can be suitable carriers for drugs targeting PPIs. This can open a new opportunity in the emerging field of multifunctional therapeutics.

Keywords: Protein-protein interactions, Nanoparticles, Drug carriers, Nano-peptide hormone, Protein based nanoparticles, Computational modelling.

[1]
Iegre, J.; Ahmed, N.S.; Gaynord, J.S.; Wu, Y.; Herlihy, K.M.; Tan, Y.S.; Lopes-Pires, M.E.; Jha, R.; Lau, Y.H.; Sore, H.F.; Verma, C.; O’ Donovan, D.H.; Pugh, N.; Spring, D.R. Stapled peptides as a new technology to investigate protein-protein interactions in human platelets. Chem. Sci. (Camb.), 2018, 9(20), 4638-4643.
[http://dx.doi.org/10.1039/C8/SC00284C] [PMID: 29899957]
[2]
Bakail, M.; Ochsenbein, F. Targeting protein–protein interactions, A wide open field for drug design. C. R. Chim., 2016, 19, 19-27.
[http://dx.doi.org/10.1016/j.crci.2015.12.004]
[3]
Yin, H.; Hamilton, A.D. Strategies for targeting protein-protein interactions with synthetic agents. Angew. Chem. Int. Ed. Engl., 2005, 44(27), 4130-4163.
[http://dx.doi.org/10.1002/anie.200461786] [PMID: 15954154]
[4]
Tarhini, M.; Greige-Gerges, H.; Elaissari, A. Protein-based nanoparticles: From preparation to encapsulation of active molecules. Int. J. Pharm., 2017, 522(1-2), 172-197.
[http://dx.doi.org/ 10.1016/j.ijpharm.2017.01.067] [PMID: 28188876]
[5]
Shibue, R.; Sasamoto, T.; Shimada, M.; Zhang, B.; Yamagishi, A.; Akanuma, S. Comprehensive reduction of amino acid set in a protein suggests the importance of prebiotic amino acids for stable proteins. Sci. Rep., 2018, 8(1), 1227.
[http://dx.doi.org/ 10.1038/s41598-018-19561-1] [PMID: 29352156]
[6]
Li, X-H.; Chavali, P.L.; Babu, M.M. Capturing dynamic protein interactions. Science, 2018, 359(6380), 1105-1106.
[http://dx.doi.org/10.1126/science.aat0576] [PMID: 29590031]
[7]
Petta, I.; Lievens, S.; Libert, C.; Tavernier, J.; De Bosscher, K. Modulation of protein–protein interactions for the development of novel therapeutics. Mol. Ther., 2016, 24(4), 707-718.
[http://dx.doi.org/10.1038/mt.2015.214] [PMID: 26675501]
[8]
Jubb, H.C.; Pandurangan, A.P.; Turner, M.A.; Ochoa-Montaño, B.; Blundell, T.L.; Ascher, D.B. Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. Prog. Biophys. Mol. Biol., 2017, 128, 3-13.
[http://dx.doi.org/10.1016/j.pbiomolbio.2016.10.002] [PMID: 27913149]
[9]
Havlicek, J.; Rivera-Milla, E.; Slickers, P.; Andres, S.; Feuerriegel, S.; Niemann, S.; Merker, M.; Labugger, I. An application of competitive reporter monitored amplification (CMA) for rapid detection of single nucleotide polymorphisms (SNPs). PLoS One, 2017, 12(8), e0183561.
[http://dx.doi.org/10.1371/journal.pone.0183561] [PMID: 28850612]
[10]
Marcotte, E.M.; Pellegrini, M.; Ng, H.L.; Rice, D.W.; Yeates, T.O.; Eisenberg, D. Detecting protein function and protein-protein interactions from genome sequences. Science, 1999, 285(5428), 751-753.
[http://dx.doi.org/10.1126/science.285.5428.751] [PMID: 10427000]
[11]
Lee, H-W.; Choi, B.; Kang, H.N.; Kim, H.; Min, A.; Cha, M.; Ryu, J.Y.; Park, S.; Sohn, J.; Shin, K.; Yun, M.R.; Han, J.Y.; Shon, M.J.; Jeong, C.; Chung, J.; Lee, S-H. Im, S.-A.; Cho, B.C.; Yoon, T.-Y. Profiling of protein–protein interactions via single-molecule techniques predicts the dependence of cancers on growth-factor receptors. Nat. Biomed. Eng., 2018, 2, 239-253.
[http://dx.doi.org/ 10.1038/s41551-018-0212-3]
[12]
Sun, Y-M.; Lu, C.; Wu, Z-Y. Spinocerebellar ataxia: Relationship between phenotype and genotype -A review. Clin. Genet., 2016, 90(4), 305-314.
[http://dx.doi.org/10.1111/cge.12808] [PMID: 27220866]
[13]
Lim, J.; Hao, T.; Shaw, C.; Patel, A.J.; Szabó, G.; Rual, J-F.; Fisk, C.J.; Li, N.; Smolyar, A.; Hill, D.E.; Barabási, A-L.; Vidal, M.; Zoghbi, H.Y. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 2006, 125(4), 801-814.
[http://dx.doi.org/10.1016/j.cell.2006.03.032] [PMID: 16713569]
[14]
Wagner, M.J.; Stacey, M.M.; Liu, B.A.T.; Pawson, T. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb. Perspect. Biol., 2013, 5(12), a008987.
[http://dx.doi.org/10.1101/cshperspect.a008987] [PMID: 24296166]
[15]
Plessl, T.; Bürer, C.; Lutz, S.; Yue, W.W.; Baumgartner, M.R.; Froese, D.S. Protein destabilization and loss of protein-protein interaction are fundamental mechanisms in cblA-type methylmalonic aciduria. Hum. Mutat., 2017, 38(8), 988-1001.
[http://dx.doi.org/ 10.1002/humu.23251] [PMID: 28497574]
[16]
Fujiwara, R.; Yokoi, T.; Nakajima, M. Structure and protein–protein interactions of human udp-glucuronosyltransferases. Front. Pharmacol., 2016, 7, 388.
[http://dx.doi.org/10.3389/fphar.2016.00388] [PMID: 27822186]
[17]
Freilich, R.; Arhar, T.; Abrams, J.L.; Gestwicki, J.E. Protein–protein interactions in the molecular chaperone network. Acc. Chem. Res., 2018, 51(4), 940-949.
[http://dx.doi.org/10.1021/acs.accounts.8b00036] [PMID: 29613769]
[18]
Ivanov, S.M.; Cawley, A.; Huber, R.G.; Bond, P.J.; Warwicker, J. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold. PLoS One, 2017, 12(10), e0185928.
[http://dx.doi.org/10.1371/journal.pone.0185928] [PMID: 29016650]
[19]
Taghipour, S.; Zarrineh, P.; Ganjtabesh, M.; Nowzari-Dalini, A. Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of Escherichia coli from different physical interaction data sources. BMC Bioinformatics, 2017, 18(1), 10.
[http://dx.doi.org/10.1186/s12859-016-1422-x] [PMID: 28049415]
[20]
Strickland, M.; Ehrlich, L.S.; Watanabe, S.; Khan, M.; Strub, M-P.; Luan, C-H.; Powell, M.D.; Leis, J.; Tjandra, N.; Carter, C.A. Tsg101 chaperone function revealed by HIV-1 assembly inhibitors. Nat. Commun., 2017, 8(1), 1391.
[http://dx.doi.org/10.1038/s41467-017-01426-2] [PMID: 29123089]
[21]
Baig, S.; Seevasant, I.; Mohamad, J.; Mukheem, A.; Huri, H.Z.; Kamarul, T. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Cell Death Dis., 2016, 7, e2058.
[http://dx.doi.org/10.1038/cddis.2015.275] [PMID: 26775709]
[22]
Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O’Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681.
[http://dx.doi.org/ 10.1038/nature03579] [PMID: 15902208]
[23]
Tovar, C.; Rosinski, J.; Filipovic, Z.; Higgins, B.; Kolinsky, K.; Hilton, H.; Zhao, X.; Vu, B.T.; Qing, W.; Packman, K.; Myklebost, O.; Heimbrook, D.C.; Vassilev, L.T. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy. Proc. Natl. Acad. Sci. USA, 2006, 103(6), 1888-1893.
[http://dx.doi.org/10.1073/pnas.0507493103] [PMID: 16443686]
[24]
Shangary, S.; Qin, D.; McEachern, D.; Liu, M.; Miller, R.S.; Qiu, S.; Nikolovska-Coleska, Z.; Ding, K.; Wang, G.; Chen, J.; Bernard, D.; Zhang, J.; Lu, Y.; Gu, Q.; Shah, R.B.; Pienta, K.J.; Ling, X.; Kang, S.; Guo, M.; Sun, Y.; Yang, D.; Wang, S. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl. Acad. Sci. USA, 2008, 105(10), 3933-3938.
[http://dx.doi.org/ 10.1073/pnas.0708917105] [PMID: 18316739]
[25]
McInnes, C. Progress in the development of non-atp-competitive protein kinase inhibitors for oncology. In:Annual reports in Medicinal Chemistry; Manoj, C.D., Ed.; Elsevier, 2012, Vol. 47, pp. 459-474.
[http://dx.doi.org/10.1016/B978-0-12-396492-2.00029-1]
[26]
Budovsky, A.; Tacutu, R.; Yanai, H.; Abramovich, A.; Wolfson, M.; Fraifeld, V. Common gene signature of cancer and longevity. Mech. Ageing Dev., 2009, 130(1-2), 33-39.
[http://dx.doi.org/ 10.1016/j.mad.2008.04.002] [PMID: 18486187]
[27]
Sanchez, R.; Meslamani, J.; Zhou, M-M. The bromodomain: From epigenome reader to druggable target. Biochim. Biophys. Acta, 2014, 1839(8), 676-685.
[http://dx.doi.org/10.1016/j.bbagrm.2014.03.011] [PMID: 24686119]
[28]
Picaud, S.; Leonards, K.; Lambert, J-P.; Dovey, O.; Wells, C.; Fedorov, O.; Monteiro, O.; Fujisawa, T.; Wang, C.Y.; Lingard, H.; Tallant, C.; Nikbin, N.; Guetzoyan, L.; Ingham, R.; Ley, S.V.; Brennan, P.; Muller, S.; Samsonova, A.; Gingras, A.C.; Schwaller, J.; Vassiliou, G.; Knapp, S.; Filippakopoulos, P. Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Sci. Adv., 2016, 2(10), e1600760.
[http://dx.doi.org/ 10.1126/sciadv.1600760] [PMID: 27757418]
[29]
Filippakopoulos, P.; Knapp, S. Targeting bromodomains: Epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov., 2014, 13(5), 337-356.
[http://dx.doi.org/10.1038/nrd4286] [PMID: 24751816]
[30]
Dutra, L.A.; Heidenreich, D.; Silva, G.D.B.D.; Man Chin, C.; Knapp, S.; Santos, J.L.D. Dietary compound resveratrol is a Pan-BET bromodomain inhibitor. Nutrients, 2017, 9(11), 1172.
[http://dx.doi.org/10.3390/nu9111172] [PMID: 29077030]
[31]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[32]
Zoltowska, K.M.; Maesako, M.; Meier, J.; Berezovska, O. Novel interaction between Alzheimer’s disease-related protein presenilin 1 and glutamate transporter 1. Sci. Rep., 2018, 8(1), 8718.
[http://dx.doi.org/10.1038/s41598-018-26888-2] [PMID: 29880815]
[33]
Cai, K.; Frederick, R.O.; Tonelli, M.; Markley, J.L. Interactions of iron-bound frataxin with ISCU and ferredoxin on the cysteine desulfurase complex leading to Fe-S cluster assembly. J. Inorg. Biochem., 2018, 183, 107-116.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.03.007] [PMID: 29576242]
[34]
Tang, X.; Hu, X.; Yang, X.; Fan, Y.; Li, Y.; Hu, W.; Liao, Y.; Zheng, M.C.; Peng, W.; Gao, L. Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information. BMC Genomics, 2016, 17(Suppl. 4), 433.
[http://dx.doi.org/10.1186/s12864-016-2795-y] [PMID: 27535125]
[35]
Chakraborty, C.; Roy, S.S.; Hsu, M.J.; Agoramoorthy, G. Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: a network-based protein-protein interaction analysis. PLoS One, 2011, 6(1), e16388.
[http://dx.doi.org/10.1371/journal.pone.0016388] [PMID: 21305025]
[36]
Virkamäki, A.; Ueki, K.; Kahn, C.R. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest., 1999, 103(7), 931-943.
[http://dx.doi.org/ 10.1172/JCI6609] [PMID: 10194465]
[37]
Ruan, W.; Kang, Z.; Li, Y.; Sun, T.; Wang, L.; Liang, L.; Lai, M.; Wu, T. Interaction between IGFBP7 and insulin: A theoretical and experimental study. Sci. Rep., 2016, 6, 19586.
[http://dx.doi.org/10.1038/srep19586] [PMID: 27101796]
[38]
Hauser, M.; Qian, C.; King, S.T.; Kauffman, S.; Naider, F.; Hettich, R.L.; Becker, J.M. Identification of peptide-binding sites within BSA using rapid, laser-induced covalent cross-linking combined with high-performance mass spectrometry. J. Mol. Recognit., 2018, 31(2), e2680.
[http://dx.doi.org/10.1002/jmr.2680] [PMID: 28994207]
[39]
Brownstein, M.J.; Russell, J.T.; Gainer, H. Synthesis, transport, and release of posterior pituitary hormones. Science, 1980, 207(4429), 373-378.
[http://dx.doi.org/10.1126/science.6153132] [PMID: 6153132]
[40]
Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev., 2001, 81(2), 629-683.
[http://dx.doi.org/10.1152/physrev.2001.81.2.629] [PMID: 11274341]
[41]
Camier, M.; Alazard, R.; Cohen, P. Hormonal interactions at the molecular level. A study of oxytocin and vasopressin binding to bovine neurophysins. Eur. J. Biochem., 1973, 32(2), 207-214.
[http://dx.doi.org/10.1111/j.1432-1033.1973.tb02598.x] [PMID: 4734532]
[42]
Koehbach, J.; Stockner, T.; Bergmayr, C.; Muttenthaler, M.; Gruber, C.W. Insights into the molecular evolution of oxytocin receptor ligand binding. Biochem. Soc. Trans., 2013, 41(1), 197-204.
[http://dx.doi.org/10.1042/BST20120256] [PMID: 23356283]
[43]
Tadi, K.K.; Alshanski, I.; Mervinetsky, E.; Marx, G.; Petrou, P.; Dimitrios, K.M.; Gilon, C.; Hurevich, M.; Yitzchaik, S. Oxytocin-monolayer-based impedimetric biosensor for zinc and copper ions. ACS Omega, 2017, 2(12), 8770-8778.
[http://dx.doi.org/ 10.1021/acsomega.7b01404] [PMID: 29302631]
[44]
Gutkowska, J.; Jankowski, M.; Antunes-Rodrigues, J. The role of oxytocin in cardiovascular regulation. Braz. J. Med. Biol. Res., 2014, 47(3), 206-214.
[http://dx.doi.org/10.1590/1414-431X20133309] [PMID: 24676493]
[45]
Brighton, P.J.; Rana, S.; Challiss, R.J.; Konje, J.C.; Willets, J.M. Arrestins differentially regulate histamine- and oxytocin-evoked phospholipase C and mitogen-activated protein kinase signalling in myometrial cells. Br. J. Pharmacol., 2011, 162(7), 1603-1617.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01173.x] [PMID: 21175586]
[46]
Vannucci, L.; Falvo, E.; Failla, C.M.; Carbo, M.; Fornara, M.; Canese, R.; Cecchetti, S.; Rajsiglova, L.; Stakheev, D.; Krizan, J.; Boffi, A.; Carpinelli, G.; Morea, V.; Ceci, P. In vivo targeting of cutaneous melanoma using an melanoma stimulatinghormone-engineered human protein cage with fluorophore and magnetic resonance imaging tracers. J. Biomed. Nanotechnol., 2015, 11(1), 81-92.
[http://dx.doi.org/10.1166/jbn.2015.1946] [PMID: 26301302]
[47]
Chan, W.L.; Zhou, A.; Read, R.J. Towards engineering hormone-binding globulins as drug delivery agents. PLoS One, 2014, 9(11), e113402.
[http://dx.doi.org/10.1371/journal.pone.0113402] [PMID: 25426859]
[48]
Yang, Y.; Burkhard, P. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles. J. Nanobiotechnology, 2012, 10, 42.
[http://dx.doi.org/10.1186/1477-3155-10-42] [PMID: 23114058]
[49]
Vasti, C.; Bonnet, L.V.; Galiano, M.R.; Rojas, R.; Giacomelli, C.E. Relevance of protein-protein interactions on the biological identity of nanoparticles. Colloids Surf. B Biointerfaces, 2018, 166, 330-338.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.032] [PMID: 29609156]
[50]
Yu, J. Hyeon-Jin Kim; Mi-Ran Go; Song-Hwa Bae Soo-Jin Choi. ZnO Interactions with biomatrices: effect of particle size on ZnO-protein corona. Nanomaterials (Basel), 2017, 7, 377.
[http://dx.doi.org/10.3390/nano7110377]
[51]
Mohanraj, V.J.; Chen, Y. Nanoparticles-A review. Trop. J. Pharm. Res., 2006, 5, 561-573.
[52]
Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys., 2003, 36, R167.
[http://dx.doi.org/10.1088/0022-3727/36/13/201]
[53]
Miladi, K.; Sfar, S.; Fessi, H.; Elaissari, A. Nanoprecipitation process: From particle preparation to in vivo applications; Springer: Cham, 2016, pp. 17-53.
[54]
Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[55]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[56]
Santos, C.S.C.; Gabriel, B.; Blanchy, M.; Menes, O.; García, D.; Blanco, M.; Arconada, N.; Neto, V. Industrial applications of nanoparticles – a prospective overview. Mater. Today Proc., 2015, 2, 456-465.
[http://dx.doi.org/10.1016/j.matpr.2015.04.056]
[57]
Kopp, M.; Kollenda, S.; Epple, M. Nanoparticle−protein interactions: Therapeutic approaches and supramolecular chemistry. Acc. Chem. Res., 2017, 50(6), 1383-1390.
[http://dx.doi.org/10.1021/acs.accounts.7b00051] [PMID: 28480714]
[58]
Tripathi, K.; Driskell, J.D. Quantifying bound and active antibodies conjugated to gold nanoparticles: A comprehensive and robust approach to evaluate immobilization chemistry. ACS Omega, 2018, 3(7), 8253-8259.
[http://dx.doi.org/10.1021/acsomega.8b00591] [PMID: 30087938]
[59]
Thompson, A.B.; Calhoun, A.K.; Smagghe, B.J.; Stevens, M.D.; Wotkowicz, M.T.; Hatziioannou, V.M.; Bamdad, C. A gold nanoparticle platform for protein-protein interactions and drug discovery. ACS Appl. Mater. Interfaces, 2011, 3(8), 2979-2987.
[http://dx.doi.org/10.1021/am200459a] [PMID: 21699220]
[60]
Zeng, J.; Zhang, T.; Tanaka, T.R. Single domain antibody fragments as drug surrogates targeting protein–protein interactions inside cells. Antibodies (Basel), 2013, 2, 306-320.
[http://dx.doi.org/10.3390/antib2020306]
[61]
Torchilin, V.P.; Klibanov, A.L. Immobilization of proteins on liposome surface. Enzyme Microb. Technol., 1981, 3, 297-304.
[http://dx.doi.org/10.1016/0141-0229(81)90003-X]
[62]
Kirpotin, D.B.; Noble, C.O.; Hayes, M.E.; Huang, Z.; Kornaga, T.; Zhou, Y.; Nielsen, U.B.; Marks, J.D.; Drummond, D.C. Building and characterizing antibody-targeted lipidic nanotherapeutics. Methods Enzymol., 2012, 502, 139-166.
[http://dx.doi.org/10.1016/B978-0-12-416039-2.00007-0] [PMID: 22208985]
[63]
Fei, L.; Perrett, S. Effect of nanoparticles on protein folding and fibrillogenesis. Int. J. Mol. Sci., 2009, 10(2), 646-655.
[http://dx.doi.org/10.3390/ijms10020646] [PMID: 19333426]
[64]
Martínez Rivas, C.J.; Tarhini, M.; Badri, W.; Miladi, K.; Greige-Gerges, H.; Nazari, Q.A.; Galindo Rodríguez, S.A.; Román, R.Á.; Fessi, H.; Elaissari, A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm., 2017, 532(1), 66-81.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.064] [PMID: 28801107]
[65]
Tarhini, M.; Benlyamani, I.; Hamdani, S.; Agusti, G.; Fessi, H.; Greige-Gerges, H.; Bentaher, A.; Elaissari, A. Protein-based nanoparticle preparation via nanoprecipitation method. Materials, 2018, 11(3), 394.
[http://dx.doi.org/10.3390/ma11030394] [PMID: 29518919]
[66]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release, 2012, 161(1), 38-49.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.036] [PMID: 22564368]
[67]
Couvreur, P.; Puisieux, F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv. Drug Deliv. Rev., 1993, 10, 141-162.
[http://dx.doi.org/10.1016/0169-409X(93)90046-7]
[68]
Mishra, V.; Mahor, S.; Rawat, A.; Gupta, P.N.; Dubey, P.; Khatri, K.; Vyas, S.P. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J. Drug Target., 2006, 14(1), 45-53.
[http://dx.doi.org/10.1080/10611860600612953] [PMID: 16603451]
[69]
Kim, T.H.; Jiang, H.H.; Youn, Y.S.; Park, C.W.; Tak, K.K.; Lee, S.; Kim, H.; Jon, S.; Chen, X.; Lee, K.C. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int. J. Pharm., 2011, 403(1-2), 285-291.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.041] [PMID: 21035530]
[70]
Sheng, C.; Dong, G.; Miao, Z.; Zhang, W.; Wang, W. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem. Soc. Rev., 2015, 44(22), 8238-8259.
[http://dx.doi.org/10.1039/C5CS00252D] [PMID: 26248294]
[71]
Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell, 2004, 116(2), 191-203.
[http://dx.doi.org/10.1016/S0092-8674(03)01077-8] [PMID: 14744431]
[72]
Sprinzak, E.; Altuvia, Y.; Margalit, H. Characterization and prediction of protein-protein interactions within and between complexes. Proc. Natl. Acad. Sci. USA, 2006, 103(40), 14718-14723.
[http://dx.doi.org/10.1073/pnas.0603352103] [PMID: 17003128]
[73]
Keskin, O.; Nussinov, R. Similar binding sites and different partners: Implications to shared proteins in cellular pathways. Structure, 2007, 15(3), 341-354.
[http://dx.doi.org/10.1016/j.str.2007.01.007] [PMID: 17355869]
[74]
Dreis, S.; Rothweiler, F.; Michaelis, M.; Cinatl, J., Jr; Kreuter, J.; Langer, K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int. J. Pharm., 2007, 341(1-2), 207-214.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.036] [PMID: 17478065]
[75]
Bajpai, A.K.; Choubey, J. In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles. J. Appl. Polym. Sci., 2006, 101, 2320-2332.
[http://dx.doi.org/10.1002/app.23761]
[76]
Maghsoudi, A.; Shojaosadati, S.A.; Vasheghani Farahani, E. 5-Fluorouracil-loaded BSA nanoparticles: Formulation optimization and in vitro release study. AAPS PharmSciTech, 2008, 9(4), 1092-1096.
[http://dx.doi.org/10.1208/s12249-008-9146-5] [PMID: 18850275]
[77]
Elzoghby, A.O.; Helmy, M.W.; Samy, W.M.; Elgindy, N.A. Novel ionically crosslinked casein nanoparticles for flutamide delivery: Formulation, characterization, and in vivo pharmacokinetics. Int. J. Nanomedicine, 2013, 8, 1721-1732.
[http://dx.doi.org/10.2147/IJN.S40674] [PMID: 23658490]
[78]
Esmaili, M.; Ghaffari, S.M.; Moosavi-Movahedi, Z.; Atri, M.S.; Sharifizadeh, A.; Farhadi, M.; Yousefi, R.; Chobert, J.M.; Haertlé, T.; Moosavi-Movahedi, A.A. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. Lebensm. Wiss. Technol., 2011, 44, 2166-2172.
[http://dx.doi.org/10.1016/j.lwt.2011.05.023]
[79]
Saraiva, C.; Praca, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood brain barrier to treat neurodegenerative diseases. J. Control. Release, 2009, 61, 428-437.
[PMID: 27208862]
[80]
Harmon, T.; Harbuzariu, A.; Lanier, V.; Lipsey, C.C.; Kirlin, W.; Yang, L.; Gonzalez-Perez, R.R. Nanoparticle-linked antagonist for leptin signaling inhibition in breast cancer. World J. Clin. Oncol., 2017, 8(1), 54-66.
[http://dx.doi.org/10.5306/wjco.v8.i1.54] [PMID: 28246585]
[81]
Hockaday, D.C.; Shen, S.; Fiveash, J.; Raubitschek, A.; Colcher, D.; Liu, A.; Alvarez, V.; Mamelak, A.N. Imaging glioma extent with 131I-TM-601. J. Nucl. Med., 2005, 46(4), 580-586.
[PMID: 15809479]
[82]
Tarcha, E.J.; Olsen, C.M.; Probst, P.; Peckham, D.; Muñoz-Elías, E.J.; Kruger, J.G.; Iadonato, S.P. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial. PLoS One, 2017, 12(7), e0180762.
[http://dx.doi.org/10.1371/journal.pone.0180762] [PMID: 28723914]
[83]
Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorg. Med. Chem., 2018, 26(10), 2738-2758.
[http://dx.doi.org/10.1016/j.bmc.2017. 09.029] [PMID: 28988749]
[84]
Andreeff, M.; Kelly, K.R.; Yee, K.; Assouline, S.; Strair, R.; Popplewell, L.; Bowen, D.; Martinelli, G.; Drummond, M.W.; Vyas, P.; Kirschbaum, M.; Iyer, S.P.; Ruvolo, V.; González, G.M.; Huang, X.; Chen, G.; Graves, B.; Blotner, S.; Bridge, P.; Jukofsky, L.; Middleton, S.; Reckner, M.; Rueger, R.; Zhi, J.; Nichols, G.; Kojima, K. Results of the phase I trial of RG7112, a small-molecule mdm2 antagonist in leukemia. Clin. Cancer Res., 2016, 22(4), 868-876.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0481] [PMID: 26459177]
[85]
Tse, C.; Shoemaker, A.R.; Adickes, J.; Anderson, M.G.; Chen, J.; Jin, S.; Johnson, E.F.; Marsh, K.C.; Mitten, M.J.; Nimmer, P.; Roberts, L.; Tahir, S.K.; Xiao, Y.; Yang, X.; Zhang, H.; Fesik, S.; Rosenberg, S.H.; Elmore, S.W. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res., 2008, 68(9), 3421-3428.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5836] [PMID: 18451170]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 6
Year: 2019
Page: [444 - 456]
Pages: 13
DOI: 10.2174/1568026619666190304152320
Price: $58

Article Metrics

PDF: 42
HTML: 4