An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis

Author(s): Matteo Mori , José Camilla Sammartino , Luca Costantino , Arianna Gelain , Fiorella Meneghetti , Stefania Villa , Laurent Roberto Chiarelli* .

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.

Keywords: Tuberculosis, Antitubercular drugs, Virulence inhibition, Transmembrane signal transduction, Serine/Threonine Protein Kinases, Kinase inhibition.

[1]
Yee, D.; Valiquette, C.; Pelletier, M.; Parisien, I.; Rocher, I.; Menzies, D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am. J. Respir. Crit. Care Med., 2003, 167(11), 1472-1477. [http://dx.doi.org/10.1164/rccm.200206-626OC]. [PMID: 12569078].
[2]
Faustini, A.; Hall, A.J.; Perucci, C.A. Risk factors for multidrug resistant tuberculosis in Europe: a systematic review. Thorax, 2006, 61(2), 158-163. [http://dx.doi.org/10.1136/thx.2005.045963]. [PMID: 16254056].
[3]
Mulu, W.; Mekonnen, D.; Yimer, M.; Admassu, A.; Abera, B. Risk factors for multidrug resistant tuberculosis patients in Amhara National Regional State. Afr. Health Sci., 2015, 15(2), 368-377. [http://dx.doi.org/10.4314/ahs.v15i2.9]. [PMID: 26124781].
[4]
Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 529-564. [http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100120]. [PMID: 15822188].
[5]
Chiarelli, L.R.; Mori, G.; Esposito, M.; Orena, B.S.; Pasca, M.R. New and old hot drug targets in tuberculosis. Curr. Med. Chem., 2016, 23(33), 3813-3846. [http://dx.doi.org/10.2174/1389557516666160831164925]. [PMID: 27666933].
[6]
Meneghetti, F.; Villa, S.; Gelain, A.; Barlocco, D.; Chiarelli, L.R.; Pasca, M.R.; Costantino, L. Iron acquisition pathways as targets for antitubercular drugs. Curr. Med. Chem., 2016, 23(35), 4009-4026. [http://dx.doi.org/10.2174/0929867323666160607223747]. [PMID: 27281295].
[7]
Vickers, C.F.; Silva, A.P.G.; Chakraborty, A.; Fernandez, P.; Kurepina, N.; Saville, C.; Naranjo, Y.; Pons, M.; Schnettger, L.S.; Gutierrez, M.G.; Park, S.; Kreiswith, B.N.; Perlin, D.S.; Thomas, E.J.; Cavet, J.S.; Tabernero, L. Structure-based design of MptpB inhibitors that reduce multidrug-resistant Mycobacterium tuberculosis survival and infection burden in vivo. J. Med. Chem., 2018, 61(18), 8337-8352. [http://dx.doi.org/10.1021/acs.jmedchem.8b00832]. [PMID: 30153005].
[8]
Chiarelli, L.R.; Mori, M.; Barlocco, D.; Beretta, G.; Gelain, A.; Pini, E.; Porcino, M.; Mori, G.; Stelitano, G.; Costantino, L.; Lapillo, M.; Bonanni, D.; Poli, G.; Tuccinardi, T.; Villa, S.; Meneghetti, F. Discovery and development of novel salicylate synthase (MbtI) furanic inhibitors as antitubercular agents. Eur. J. Med. Chem., 2018, 155, 754-763. [http://dx.doi.org/10.1016/j.ejmech.2018.06.033]. [PMID: 29940465].
[9]
Pini, E.; Poli, G.; Tuccinardi, T.; Chiarelli, L.R.; Mori, M.; Gelain, A.; Costantino, L.; Villa, S.; Meneghetti, F.; Barlocco, D. New chromane-based derivatives as inhibitors of Mycobacterium tuberculosis salicylate synthase (MbtI): Preliminary biological evaluation and molecular modeling studies. Molecules, 2018, 23(7)E1506 [http://dx.doi.org/10.3390/molecules23071506]. [PMID: 29933627].
[10]
Johnson, B.K.; Abramovitch, R.B. Small Molecules That sabotage bacterial virulence. Trends Pharmacol. Sci., 2017, 38(4), 339-362. [http://dx.doi.org/10.1016/j.tips.2017.01.004]. [PMID: 28209403].
[11]
Bem, A.E.; Velikova, N.; Pellicer, M.T.; Baarlen, Pv.; Marina, A.; Wells, J.M. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem. Biol., 2015, 10(1), 213-224. [http://dx.doi.org/10.1021/cb5007135]. [PMID: 25436989].
[12]
Prisic, S.; Husson, R.N. Mycobacterium tuberculosis serine/threonine protein kinases. Microbiol. Spectr., 2014, 2, MGM2-MGM0006.
[13]
Bach, H.; Wong, D.; Av-Gay, Y. Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem. J., 2009, 420(2), 155-160. [http://dx.doi.org/10.1042/BJ20090478]. [PMID: 19366344].
[14]
Wong, D.; Li, W.; Chao, J.D.; Zhou, P.; Narula, G.; Tsui, C.; Ko, M.; Xie, J.; Martinez-Frailes, C.; Av-Gay, Y. Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages. Sci. Rep., 2018, 8(1), 155. [http://dx.doi.org/10.1038/s41598-017-18547-9]. [PMID: 29317718].
[15]
Fanzani, L.; Porta, F.; Meneghetti, F.; Villa, S.; Gelain, A.; Lucarelli, A.P.; Parisini, E. Mycobacterium tuberculosis low molecular weight phosphatases (MPtpA and MPtpB): From biological insight to inhibitors. Curr. Med. Chem., 2015, 22(27), 3110-3132. [http://dx.doi.org/10.2174/0929867322666150812150036]. [PMID: 26264920].
[16]
Zheng, H.; Colvin, C.J.; Johnson, B.K.; Kirchhoff, P.D.; Wilson, M.; Jorgensen-Muga, K.; Larsen, S.D.; Abramovitch, R.B. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat. Chem. Biol., 2017, 13(2), 218-225. [http://dx.doi.org/10.1038/nchembio.2259]. [PMID: 27992879].
[17]
Gupta, R.K.; Thakur, T.S.; Desiraju, G.R.; Tyagi, J.S. Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(20), 6324-6334. [http://dx.doi.org/10.1021/jm900358q]. [PMID: 19827833].
[18]
Wehenkel, A.; Bellinzoni, M.; Graña, M.; Duran, R.; Villarino, A.; Fernandez, P.; Andre-Leroux, G.; England, P.; Takiff, H.; Cerveñansky, C.; Cole, S.T.; Alzari, P.M. Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim. Biophys. Acta, 2008, 1784(1), 193-202. [http://dx.doi.org/10.1016/j.bbapap.2007.08.006]. [PMID: 17869195].
[19]
Hanks, S.K.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J., 1995, 9(8), 576-596. [http://dx.doi.org/10.1096/fasebj.9.8.7768349]. [PMID: 7768349].
[20]
Pérez, J.; Castañeda-García, A.; Jenke-Kodama, H.; Müller, R.; Muñoz-Dorado, J. Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc. Natl. Acad. Sci. USA, 2008, 105(41), 15950-15955. [http://dx.doi.org/10.1073/pnas.0806851105]. [PMID: 18836084].
[21]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544. [http://dx.doi.org/10.1038/31159]. [PMID: 9634230].
[22]
Narayan, A.; Sachdeva, P.; Sharma, K.; Saini, A.K.; Tyagi, A.K.; Singh, Y. Serine threonine protein kinases of mycobacterial genus: Phylogeny to function. Physiol. Genomics, 2007, 29(1), 66-75. [http://dx.doi.org/10.1152/physiolgenomics.00221.2006]. [PMID: 17148687].
[23]
Av-Gay, Y.; Everett, M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol., 2000, 8(5), 238-244. [http://dx.doi.org/10.1016/S0966-842X(00)01734-0]. [PMID: 10785641].
[24]
Gay, L.M.; Ng, H.L.; Alber, T. A conserved dimer and global conformational changes in the structure of apo-PknE Ser/Thr protein kinase from Mycobacterium tuberculosis. J. Mol. Biol., 2006, 360(2), 409-420. [http://dx.doi.org/10.1016/j.jmb.2006.05.015]. [PMID: 16762364].
[25]
Ortiz-Lombardía, M.; Pompeo, F.; Boitel, B.; Alzari, P.M. Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis. J. Biol. Chem., 2003, 278(15), 13094-13100. [http://dx.doi.org/10.1074/jbc.M300660200]. [PMID: 12551895].
[26]
Rakette, S.; Donat, S.; Ohlsen, K.; Stehle, T. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB. PLoS One, 2012, 7(6)e39136 [http://dx.doi.org/10.1371/journal.pone.0039136]. [PMID: 22701750].
[27]
Scherr, N.; Honnappa, S.; Kunz, G.; Mueller, P.; Jayachandran, R.; Winkler, F.; Pieters, J.; Steinmetz, M.O. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12151-12156. [http://dx.doi.org/10.1073/pnas.0702842104]. [PMID: 17616581].
[28]
Young, T.A.; Delagoutte, B.; Endrizzi, J.A.; Falick, A.M.; Alber, T. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat. Struct. Biol., 2003, 10(3), 168-174. [http://dx.doi.org/10.1038/nsb897]. [PMID: 12548283].
[29]
Johnson, L.N.; Noble, M.E.; Owen, D.J. Active and inactive protein kinases: Structural basis for regulation. Cell, 1996, 85(2), 149-158. [http://dx.doi.org/10.1016/S0092-8674(00)81092-2]. [PMID: 8612268].
[30]
Boitel, B.; Ortiz-Lombardía, M.; Durán, R.; Pompeo, F.; Cole, S.T.; Cerveñansky, C.; Alzari, P.M. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol. Microbiol., 2003, 49(6), 1493-1508. [http://dx.doi.org/10.1046/j.1365-2958.2003.03657.x]. [PMID: 12950916].
[31]
Durán, R.; Villarino, A.; Bellinzoni, M.; Wehenkel, A.; Fernandez, P.; Boitel, B.; Cole, S.T.; Alzari, P.M.; Cerveñansky, C. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem. Biophys. Res. Commun., 2005, 333(3), 858-867. [http://dx.doi.org/10.1016/j.bbrc.2005.05.173]. [PMID: 15967413].
[32]
Pereira, S.F.; Goss, L.; Dworkin, J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol. Mol. Biol. Rev., 2011, 75(1), 192-212. [http://dx.doi.org/10.1128/MMBR.00042-10]. [PMID: 21372323].
[33]
Nolen, B.; Taylor, S.; Ghosh, G. Regulation of protein kinases; Controlling activity through activation segment conformation. Mol. Cell, 2004, 15(5), 661-675. [http://dx.doi.org/10.1016/j.molcel.2004.08.024]. [PMID: 15350212].
[34]
Greenstein, A.E.; Echols, N.; Lombana, T.N.; King, D.S.; Alber, T. Allosteric activation by dimerization of the PknD receptor Ser/Thr protein kinase from Mycobacterium tuberculosis. J. Biol. Chem., 2007, 282(15), 11427-11435. [http://dx.doi.org/10.1074/jbc.M610193200]. [PMID: 17242402].
[35]
Lombana, T.N.; Echols, N.; Good, M.C.; Thomsen, N.D.; Ng, H.L.; Greenstein, A.E.; Falick, A.M.; King, D.S.; Alber, T. Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Structure, 2010, 18(12), 1667-1677. [http://dx.doi.org/10.1016/j.str.2010.09.019]. [PMID: 21134645].
[36]
Sassetti, C.M.; Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12989-12994. [http://dx.doi.org/10.1073/pnas.2134250100]. [PMID: 14569030].
[37]
Cowley, S.; Ko, M.; Pick, N.; Chow, R.; Downing, K.J.; Gordhan, B.G.; Betts, J.C.; Mizrahi, V.; Smith, D.A.; Stokes, R.W.; Av-Gay, Y. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol. Microbiol., 2004, 52(6), 1691-1702. [http://dx.doi.org/10.1111/j.1365-2958.2004.04085.x]. [PMID: 15186418].
[38]
Walburger, A.; Koul, A.; Ferrari, G.; Nguyen, L.; Prescianotto-Baschong, C.; Huygen, K.; Klebl, B.; Thompson, C.; Bacher, G.; Pieters, J. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science, 2004, 304(5678), 1800-1804. [http://dx.doi.org/10.1126/science.1099384]. [PMID: 15155913].
[39]
Nakedi, K.C. Nel, A.J.; Garnett, S.; Blackburn, J.M.; Soares, N.C. Comparative Ser/Thr/Tyr phosphoproteomics between two mycobacterial species: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG. Front. Microbiol., 2015, 6, 237. [http://dx.doi.org/10.3389/fmicb.2015.00237]. [PMID: 25904896].
[40]
Wu, F.L.; Liu, Y.; Jiang, H.W.; Luan, Y.Z.; Zhang, H.N.; He, X.; Xu, Z.W.; Hou, J.L.; Ji, L.Y.; Xie, Z.; Czajkowsky, D.M.; Yan, W.; Deng, J.Y.; Bi, L.J.; Zhang, X.E.; Tao, S.C. The Ser/Thr protein kinase protein-protein interaction map of M. tuberculosis. Mol. Cell. Proteomics, 2017, 16(8), 1491-1506. [http://dx.doi.org/10.1074/mcp.M116.065771]. [PMID: 28572091].
[41]
Meeske, A.J.; Riley, E.P.; Robins, W.P.; Uehara, T.; Mekalanos, J.J.; Kahne, D.; Walker, S.; Kruse, A.C.; Bernhardt, T.G.; Rudner, D.Z. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature, 2016, 537(7622), 634-638. [http://dx.doi.org/10.1038/nature19331]. [PMID: 27525505].
[42]
Fernandez, P.; Saint-Joanis, B.; Barilone, N.; Jackson, M.; Gicquel, B.; Cole, S.T.; Alzari, P.M. The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J. Bacteriol., 2006, 188(22), 7778-7784. [http://dx.doi.org/10.1128/JB.00963-06]. [PMID: 16980473].
[43]
Molle, V.; Kremer, L. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol. Microbiol., 2010, 75(5), 1064-1077. [http://dx.doi.org/10.1111/j.1365-2958.2009.07041.x]. [PMID: 20487298].
[44]
Ortega, C.; Liao, R.; Anderson, L.N.; Rustad, T.; Ollodart, A.R.; Wright, A.T.; Sherman, D.R.; Grundner, C. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol., 2014, 12(1)e1001746 [http://dx.doi.org/10.1371/journal.pbio.1001746]. [PMID: 24409094].
[45]
Chawla, Y.; Upadhyay, S.; Khan, S.; Nagarajan, S.N.; Forti, F.; Nandicoori, V.K. Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. J. Biol. Chem., 2014, 289(20), 13858-13875. [http://dx.doi.org/10.1074/jbc.M114.563536]. [PMID: 24706757].
[46]
Kang, C.M.; Abbott, D.W.; Park, S.T.; Dascher, C.C.; Cantley, L.C.; Husson, R.N. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev., 2005, 19(14), 1692-1704. [http://dx.doi.org/10.1101/gad.1311105]. [PMID: 15985609].
[47]
Av-Gay, Y.; Jamil, S.; Drews, S.J. Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect. Immun., 1999, 67(11), 5676-5682. [PMID: 10531215].
[48]
Singh, A.; Singh, Y.; Pine, R.; Shi, L.; Chandra, R.; Drlica, K. Protein kinase I of Mycobacterium tuberculosis: Cellular localization and expression during infection of macrophage-like cells. Tuberculosis (Edinb.), 2006, 86(1), 28-33. [http://dx.doi.org/10.1016/j.tube.2005.04.002]. [PMID: 16256441].
[49]
Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol., 2002, 43(3), 717-731. [http://dx.doi.org/10.1046/j.1365-2958.2002.02779.x]. [PMID: 11929527].
[50]
Gee, C.L.; Papavinasasundaram, K.G.; Blair, S.R.; Baer, C.E.; Falick, A.M.; King, D.S.; Griffin, J.E.; Venghatakrishnan, H.; Zukauskas, A.; Wei, J.R.; Dhiman, R.K.; Crick, D.C.; Rubin, E.J.; Sassetti, C.M.; Alber, T. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci. Signal., 2012, 5(208), ra7. [http://dx.doi.org/10.1126/scisignal.2002525]. [PMID: 22275220].
[51]
Kang, C.M.; Nyayapathy, S.; Lee, J.Y.; Suh, J.W.; Husson, R.N. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology, 2008, 154(Pt 3), 725-735. [http://dx.doi.org/10.1099/mic.0.2007/014076-0]. [PMID: 18310019].
[52]
Shah, I.M.; Laaberki, M.H.; Popham, D.L.; Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell, 2008, 135(3), 486-496. [http://dx.doi.org/10.1016/j.cell.2008.08.039]. [PMID: 18984160].
[53]
Calvanese, L.; Falcigno, L.; Squeglia, F.; Berisio, R.; D’Auria, G. PASTA sequence composition is a predictive tool for protein class identification. Amino Acids, 2018, 50(10), 1441-1450. [http://dx.doi.org/10.1007/s00726-018-2621-8]. [PMID: 30032416].
[54]
Mir, M.; Asong, J.; Li, X.; Cardot, J.; Boons, G.J.; Husson, R.N. The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog., 2011, 7(7)e1002182 [http://dx.doi.org/10.1371/journal.ppat.1002182]. [PMID: 21829358].
[55]
Nott, T.J.; Kelly, G.; Stach, L.; Li, J.; Westcott, S.; Patel, D.; Hunt, D.M.; Howell, S.; Buxton, R.S.; O’Hare, H.M.; Smerdon, S.J. An intramolecular switch regulates phosphoindependent FHA domain interactions in Mycobacterium tuberculosis. Sci. Signal., 2009, 2(63), ra12. [http://dx.doi.org/10.1126/scisignal.2000212]. [PMID: 19318624].
[56]
Ventura, M.; Rieck, B.; Boldrin, F.; Degiacomi, G.; Bellinzoni, M.; Barilone, N.; Alzaidi, F.; Alzari, P.M.; Manganelli, R.; O’Hare, H.M. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis. Mol. Microbiol., 2013, 90(2), 356-366. [PMID: 23962235].
[57]
Molle, V.; Gulten, G.; Vilchèze, C.; Veyron-Churlet, R.; Zanella-Cléon, I.; Sacchettini, J.C.; Jacobs, W.R., Jr; Kremer, L. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis. Mol. Microbiol., 2010, 78(6), 1591-1605. [http://dx.doi.org/10.1111/j.1365-2958.2010.07446.x]. [PMID: 21143326].
[58]
Veyron-Churlet, R.; Zanella-Cléon, I.; Cohen-Gonsaud, M.; Molle, V.; Kremer, L. Phosphorylation of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J. Biol. Chem., 2010, 285(17), 12714-12725. [http://dx.doi.org/10.1074/jbc.M110.105189]. [PMID: 20178986].
[59]
Vilchèze, C.; Molle, V.; Carrère-Kremer, S.; Leiba, J.; Mourey, L.; Shenai, S.; Baronian, G.; Tufariello, J.; Hartman, T.; Veyron-Churlet, R.; Trivelli, X.; Tiwari, S.; Weinrick, B.; Alland, D.; Guérardel, Y.; Jacobs, W.R., Jr; Kremer, L. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis. PLoS Pathog., 2014, 10(5)e1004115 [http://dx.doi.org/10.1371/journal.ppat.1004115]. [PMID: 24809459].
[60]
Thakur, M.; Chakraborti, P.K. GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J. Biol. Chem., 2006, 281(52), 40107-40113. [http://dx.doi.org/10.1074/jbc.M607216200]. [PMID: 17068335].
[61]
Carette, X.; Platig, J.; Young, D.C.; Helmel, M.; Young, A.T.; Wang, Z.; Potluri, L.P.; Moody, C.S.; Zeng, J.; Prisic, S.; Paulson, J.N.; Muntel, J.; Madduri, A.V.R.; Velarde, J.; Mayfield, J.A.; Locher, C.; Wang, T.; Quackenbush, J.; Rhee, K.Y.; Moody, D.B.; Steen, H.; Husson, R.N. Multisystem analysis of Mycobacterium tuberculosis reveals kinase-dependent remodeling of the pathogen-environment interface. MBio, 2018, 9(2), e02333-e17. [http://dx.doi.org/10.1128/mBio.02333-17]. [PMID: 29511081].
[62]
Gupta, A.; Pal, S.K.; Pandey, D.; Fakir, N.A.; Rathod, S.; Sinha, D. SivaKumar, S.; Sinha, P.; Periera, M.; Balgam, S.; Sekar, G.; UmaDevi, K.R.; Anupurba, S.; Nema, V. PknB remains an essential and a conserved target for drug development in susceptible and MDR strains of M. tuberculosis. Ann. Clin. Microbiol. Antimicrob., 2017, 16(1), 56. [http://dx.doi.org/10.1186/s12941-017-0234-9]. [PMID: 28821299].
[63]
Niebisch, A.; Kabus, A.; Schultz, C.; Weil, B.; Bott, M. Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J. Biol. Chem., 2006, 281(18), 12300-12307. [http://dx.doi.org/10.1074/jbc.M512515200]. [PMID: 16522631].
[64]
Zulauf, K.E.; Sullivan, J.T.; Braunstein, M. The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathog., 2018, 14(4)e1007011 [http://dx.doi.org/10.1371/journal.ppat.1007011]. [PMID: 29709019].
[65]
Villarino, A.; Duran, R.; Wehenkel, A.; Fernandez, P.; England, P.; Brodin, P.; Cole, S.T.; Zimny-Arndt, U.; Jungblut, P.R.; Cerveñansky, C.; Alzari, P.M. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J. Mol. Biol., 2005, 350(5), 953-963. [http://dx.doi.org/10.1016/j.jmb.2005.05.049]. [PMID: 15978616].
[66]
Rieck, B.; Degiacomi, G.; Zimmermann, M.; Cascioferro, A.; Boldrin, F.; Lazar-Adler, N.R.; Bottrill, A.R.; le Chevalier, F.; Frigui, W.; Bellinzoni, M.; Lisa, M.N.; Alzari, P.M.; Nguyen, L.; Brosch, R.; Sauer, U.; Manganelli, R.; O’Hare, H.M. PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog., 2017, 13(5)e1006399 [http://dx.doi.org/10.1371/journal.ppat.1006399]. [PMID: 28545104].
[67]
Wolff, K.A.; de la Peña, A.H.; Nguyen, H.T.; Pham, T.H.; Amzel, L.M.; Gabelli, S.B.; Nguyen, L. A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog., 2015, 11(4)e1004839 [http://dx.doi.org/10.1371/journal.ppat.1004839]. [PMID: 25884716].
[68]
Tiwari, D.; Singh, R.K.; Goswami, K.; Verma, S.K.; Prakash, B.; Nandicoori, V.K. Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. J. Biol. Chem., 2009, 284(40), 27467-27479. [http://dx.doi.org/10.1074/jbc.M109.036095]. [PMID: 19638631].
[69]
Wolff, K.A.; Nguyen, H.T.; Cartabuke, R.H.; Singh, A.; Ogwang, S.; Nguyen, L. Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrob. Agents Chemother., 2009, 53(8), 3515-3519. [http://dx.doi.org/10.1128/AAC.00012-09]. [PMID: 19528288].
[70]
Paroha, R.; Chourasia, R.; Mondal, R.; Chaurasiya, S.K. PknG supports mycobacterial adaptation in acidic environment. Mol. Cell. Biochem., 2018, 443(1-2), 69-80. [http://dx.doi.org/10.1007/s11010-017-3211-x]. [PMID: 29124568].
[71]
Belanger, A.E.; Hatfull, G.F. Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J. Bacteriol., 1999, 181(21), 6670-6678. [PMID: 10542168].
[72]
Deng, J.; Bi, L.; Zhou, L.; Guo, S.J.; Fleming, J.; Jiang, H.W.; Zhou, Y.; Gu, J.; Zhong, Q.; Wang, Z.X.; Liu, Z.; Deng, R.P.; Gao, J.; Chen, T.; Li, W.; Wang, J.F.; Wang, X.; Li, H.; Ge, F.; Zhu, G.; Zhang, H.N.; Gu, J.; Wu, F.L.; Zhang, Z.; Wang, D.; Hang, H.; Li, Y.; Cheng, L.; He, X.; Tao, S.C.; Zhang, X.E. Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Cell Rep., 2014, 9(6), 2317-2329. [http://dx.doi.org/10.1016/j.celrep.2014.11.023]. [PMID: 25497094].
[73]
Nakedi, K.C.; Calder, B.; Banerjee, M.; Giddey, A.; Nel, A.J.M.; Garnett, S.; Blackburn, J.M.; Soares, N.C. Identification of novel physiological substrates of Mycobacterium bovis BCG protein kinase G (PknG) by label-free quantitative phosphoproteomics. Mol. Cell. Proteomics, 2018, 17(7), 1365-1377. [http://dx.doi.org/10.1074/mcp.RA118.000705]. [PMID: 29549130].
[74]
Khan, M.Z.; Bhaskar, A.; Upadhyay, S.; Kumari, P.; Rajmani, R.S.; Jain, P.; Singh, A.; Kumar, D.; Bhavesh, N.S.; Nandicoori, V.K. Protein kinase G confers survival advantage to Mycobacterium tuberculosis during latency-like conditions. J. Biol. Chem., 2017, 292(39), 16093-16108. [http://dx.doi.org/10.1074/jbc.M117.797563]. [PMID: 28821621].
[75]
Nakedi, K.C.; Calder, B.; Banerjee, M.; Giddey, A.; Nel, A.J.M.; Garnett, S.; Blackburn, J.M.; Soares, N.C. Identification of novel physiological substrates of Mycobacterium bovis BCG protein kinase G (PknG) by label-free quantitative phosphoproteomics. Mol. Cell. Proteomics, 2018, 17(7), 1365-1377. [http://dx.doi.org/10.1074/mcp.RA118.000705]. [PMID: 29549130].
[76]
O’Hare, H.M.; Durán, R.; Cerveñansky, C.; Bellinzoni, M.; Wehenkel, A.M.; Pritsch, O.; Obal, G.; Baumgartner, J.; Vialaret, J.; Johnsson, K.; Alzari, P.M. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol. Microbiol., 2008, 70(6), 1408-1423. [http://dx.doi.org/10.1111/j.1365-2958.2008.06489.x]. [PMID: 19019160].
[77]
Lisa, M.N.; Gil, M.; André-Leroux, G.; Barilone, N.; Durán, R.; Biondi, R.M.; Alzari, P.M. Molecular basis of the activity and the regulation of the eukaryotic-like S/T Protein Kinase PknG from Mycobacterium tuberculosis. Structure, 2015, 23(6), 1039-1048. [http://dx.doi.org/10.1016/j.str.2015.04.001]. [PMID: 25960409].
[78]
Vanzembergh, F.; Peirs, P.; Lefevre, P.; Celio, N.; Mathys, V.; Content, J.; Kalai, M. Effect of PstS sub-units or PknD deficiency on the survival of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2010, 90(6), 338-345. [http://dx.doi.org/10.1016/j.tube.2010.09.004]. [PMID: 20933472].
[79]
Peirs, P.; Lefèvre, P.; Boarbi, S.; Wang, X.M.; Denis, O.; Braibant, M.; Pethe, K.; Locht, C.; Huygen, K.; Content, J. Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect. Immun., 2005, 73(3), 1898-1902. [http://dx.doi.org/10.1128/IAI.73.3.1898-1902.2005]. [PMID: 15731097].
[80]
Peirs, P.; De Wit, L.; Braibant, M.; Huygen, K.; Content, J. A serine/threonine protein kinase from Mycobacterium tuberculosis. Eur. J. Biochem., 1997, 244(2), 604-612. [http://dx.doi.org/10.1111/j.1432-1033.1997.00604.x]. [PMID: 9119030].
[81]
Greenstein, A.E.; MacGurn, J.A.; Baer, C.E.; Falick, A.M.; Cox, J.S.; Alber, T.M. tuberculosis Ser/Thr protein kinase D phosphorylates an anti-anti-sigma factor homolog. PLoS Pathog., 2007, 3(4)e49 [http://dx.doi.org/10.1371/journal.ppat.0030049]. [PMID: 17411339].
[82]
Hatzios, S.K.; Baer, C.E.; Rustad, T.R.; Siegrist, M.S.; Pang, J.M.; Ortega, C.; Alber, T.; Grundner, C.; Sherman, D.R.; Bertozzi, C.R. Osmosensory signaling in Mycobacterium tuberculosis mediated by a eukaryotic-like Ser/Thr protein kinase. Proc. Natl. Acad. Sci. USA, 2013, 110(52), E5069-E5077. [http://dx.doi.org/10.1073/pnas.1321205110]. [PMID: 24309377].
[83]
Good, M.C.; Greenstein, A.E.; Young, T.A.; Ng, H.L.; Alber, T. Sensor domain of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknD, forms a highly symmetric beta propeller. J. Mol. Biol., 2004, 339(2), 459-469. [http://dx.doi.org/10.1016/j.jmb.2004.03.063]. [PMID: 15136047].
[84]
Be, N.A.; Bishai, W.R.; Jain, S.K. Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis. BMC Microbiol., 2012, 12, 7. [http://dx.doi.org/10.1186/1471-2180-12-7]. [PMID: 22243650].
[85]
Skerry, C.; Pokkali, S.; Pinn, M.; Be, N.A.; Harper, J.; Karakousis, P.C.; Jain, S.K. Vaccination with recombinant Mycobacterium tuberculosis PknD attenuates bacterial dissemination to the brain in guinea pigs. PLoS One, 2013, 8(6)e66310 [http://dx.doi.org/10.1371/journal.pone.0066310]. [PMID: 23776655].
[86]
Jayakumar, D.; Jacobs, W.R., Jr; Narayanan, S. Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection. Cell. Microbiol., 2008, 10(2), 365-374. [PMID: 17892498].
[87]
Kumari, R.; Singh, S.K.; Singh, D.K.; Singh, P.K.; Chaurasiya, S.K.; Srivastava, K.K. Functional characterization delineates that a Mycobacterium tuberculosis specific protein kinase (Rv3080c) is responsible for the growth, phagocytosis and intracellular survival of avirulent mycobacteria. Mol. Cell. Biochem., 2012, 369(1-2), 67-74. [http://dx.doi.org/10.1007/s11010-012-1369-9]. [PMID: 22740025].
[88]
Malhotra, V.; Arteaga-Cortés, L.T.; Clay, G.; Clark-Curtiss, J.E. Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: implications for immune modulation. Microbiology, 2010, 156(Pt 9), 2829-2841. [http://dx.doi.org/10.1099/mic.0.040675-0]. [PMID: 20522497].
[89]
Papavinasasundaram, K.G.; Chan, B.; Chung, J.H.; Colston, M.J.; Davis, E.O.; Av-Gay, Y. Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J. Bacteriol., 2005, 187(16), 5751-5760. [http://dx.doi.org/10.1128/JB.187.16.5751-5760.2005]. [PMID: 16077122].
[90]
Kumar, D.; Narayanan, S.; Pkn, E. pknE, a serine/threonine kinase of Mycobacterium tuberculosis modulates multiple apoptotic paradigms. Infect. Genet. Evol., 2012, 12(4), 737-747. [http://dx.doi.org/10.1016/j.meegid.2011.09.008]. [PMID: 21945589].
[91]
Kumar, D.; Palaniyandi, K.; Challu, V.K.; Kumar, P.; Narayanan, S.; Pkn, E. PknE, a serine/threonine protein kinase from Mycobacterium tuberculosis has a role in adaptive responses. Arch. Microbiol., 2013, 195(1), 75-80. [http://dx.doi.org/10.1007/s00203-012-0848-4]. [PMID: 23108860].
[92]
Parandhaman, D.K.; Hanna, L.E.; Narayanan, S.; Pkn, E. PknE, a serine/threonine protein kinase of Mycobacterium tuberculosis initiates survival crosstalk that also impacts HIV coinfection. PLoS One, 2014, 9(1)e83541 [http://dx.doi.org/10.1371/journal.pone.0083541]. [PMID: 24421891].
[93]
Chao, J.D.; Papavinasasundaram, K.G.; Zheng, X.; Chávez-Steenbock, A.; Wang, X.; Lee, G.Q.; Av-Gay, Y. Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J. Biol. Chem., 2010, 285(38), 29239-29246. [http://dx.doi.org/10.1074/jbc.M110.132894]. [PMID: 20630871].
[94]
Gómez-Velasco, A.; Bach, H.; Rana, A.K.; Cox, L.R.; Bhatt, A.; Besra, G.S.; Av-Gay, Y. Disruption of the serine/threonine protein kinase H affects phthiocerol dimycocerosates synthesis in Mycobacterium tuberculosis. Microbiology, 2013, 159(Pt 4), 726-736. [http://dx.doi.org/10.1099/mic.0.062067-0]. [PMID: 23412844].
[95]
Venkatesan, A.; Palaniyandi, K.; Sharma, D.; Bisht, D.; Narayanan, S. Functional characterization of PknI-Rv2159c interaction in redox homeostasis of Mycobacterium tuberculosis. Front. Microbiol., 2016, 7, 1654. [http://dx.doi.org/10.3389/fmicb.2016.01654]. [PMID: 27818650].
[96]
Prisic, S.; Dankwa, S.; Schwartz, D.; Chou, M.F.; Locasale, J.W.; Kang, C.M.; Bemis, G.; Church, G.M.; Steen, H.; Husson, R.N. Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7521-7526. [http://dx.doi.org/10.1073/pnas.0913482107]. [PMID: 20368441].
[97]
Chou, M.F.; Prisic, S.; Lubner, J.M.; Church, G.M.; Husson, R.N.; Schwartz, D. Using bacteria to determine protein kinase specificity and predict target substrates. PLoS One, 2012, 7(12)e52747 [http://dx.doi.org/10.1371/journal.pone.0052747]. [PMID: 23300758].
[98]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 2003, 48(1), 77-84. [http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x]. [PMID: 12657046].
[99]
Sipos, A.; Pató, J.; Székely, R.; Hartkoorn, R.C.; Kékesi, L.; Őrfi, L.; Szántai-Kis, C.; Mikušová, K.; Svetlíková, Z.; Korduláková, J.; Nagaraja, V.; Godbole, A.A.; Bush, N.; Collin, F.; Maxwell, A.; Cole, S.T.; Kéri, G. Lead selection and characterization of antitubercular compounds using the Nested Chemical Library. Tuberculosis (Edinb.), 2015, 95(Suppl. 1), S200-S206. [http://dx.doi.org/10.1016/j.tube.2015.02.028]. [PMID: 25801335].
[100]
Morales-Bayuelo, A. Molecular quantum similarity, chemical reactivity and database screening of 3D Pharmacophores of the protein kinases A, B and G from Mycobacterium tuberculosis. Molecules, 2017, 22(6)E1027 [http://dx.doi.org/10.3390/molecules22061027]. [PMID: 28635627].
[101]
Grangeasse, C.; Nessler, S.; Mijakovic, I. Bacterial tyrosine kinases: Evolution, Biological function and structural insights. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1602), 2640-2655. [http://dx.doi.org/10.1098/rstb.2011.0424]. [PMID: 22889913].
[102]
Hu, Y.; Conway, T.W. 2-Aminopurine inhibits the double-stranded RNA-dependent protein kinase both in vitro and in vivo. J. Interferon Res., 1993, 13(5), 323-328. [http://dx.doi.org/10.1089/jir.1993.13.323]. [PMID: 7905506].
[103]
Huang, J.T.; Schneider, R.J. Adenovirus inhibition of cellular protein synthesis is prevented by the drug 2-aminopurine. Proc. Natl. Acad. Sci. USA, 1990, 87(18), 7115-7119. [http://dx.doi.org/10.1073/pnas.87.18.7115]. [PMID: 1698291].
[104]
Bais, V.S.; Mohapatra, B.; Ahamad, N.; Boggaram, S.; Verma, S.; Prakash, B. Investigating the inhibitory potential of 2-Aminopurine metal complexes against serine/threonine protein kinases from Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2018, 108, 47-55. [http://dx.doi.org/10.1016/j.tube.2017.10.005]. [PMID: 29523327].
[105]
Huang, S.; Qu, L.K.; Cuddihy, A.R.; Ragheb, R.; Taya, Y.; Koromilas, A.E. Protein kinase inhibitor 2-aminopurine overrides multiple genotoxic stress-induced cellular pathways to promote cell survival. Oncogene, 2003, 22(24), 3721-3733. [http://dx.doi.org/10.1038/sj.onc.1206490]. [PMID: 12802279].
[106]
Feng, L.; Geisselbrecht, Y.; Blanck, S.; Wilbuer, A.; Atilla-Gokcumen, G.E.; Filippakopoulos, P.; Kräling, K.; Celik, M.A.; Harms, K.; Maksimoska, J.; Marmorstein, R.; Frenking, G.; Knapp, S.; Essen, L.O.; Meggers, E. Structurally sophisticated octahedral metal complexes as highly selective protein kinase inhibitors. J. Am. Chem. Soc., 2011, 133(15), 5976-5986. [http://dx.doi.org/10.1021/ja1112996]. [PMID: 21446733].
[107]
Székely, R.; Wáczek, F.; Szabadkai, I.; Németh, G.; Hegymegi-Barakonyi, B.; Eros, D.; Szokol, B.; Pató, J.; Hafenbradl, D.; Satchell, J.; Saint-Joanis, B.; Cole, S.T.; Orfi, L.; Klebl, B.M.; Kéri, G. A novel drug discovery concept for tuberculosis: inhibition of bacterial and host cell signalling. Immunol. Lett., 2008, 116(2), 225-231. [http://dx.doi.org/10.1016/j.imlet.2007.12.005]. [PMID: 18258308].
[108]
Wehenkel, A.; Fernandez, P.; Bellinzoni, M.; Catherinot, V.; Barilone, N.; Labesse, G.; Jackson, M.; Alzari, P.M. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett., 2006, 580(13), 3018-3022. [http://dx.doi.org/10.1016/j.febslet.2006.04.046]. [PMID: 16674948].
[109]
Drews, S.J.; Hung, F.; Av-Gay, Y. A protein kinase inhibitor as an antimycobacterial agent. FEMS Microbiol. Lett., 2001, 205(2), 369-374. [http://dx.doi.org/10.1111/j.1574-6968.2001.tb10974.x]. [PMID: 11750829].
[110]
Kumahara, E.; Ebihara, T.; Saffen, D. Protein kinase inhibitor H7 blocks the induction of immediate-early genes zif268 and c-fos by a mechanism unrelated to inhibition of protein kinase C but possibly related to inhibition of phosphorylation of RNA polymerase II. J. Biol. Chem., 1999, 274(15), 10430-10438. [http://dx.doi.org/10.1074/jbc.274.15.10430]. [PMID: 10187833].
[111]
Chapman, T.M.; Bouloc, N.; Buxton, R.S.; Chugh, J.; Lougheed, K.E.; Osborne, S.A.; Saxty, B.; Smerdon, S.J.; Taylor, D.L.; Whalley, D. Substituted aminopyrimidine protein kinase B (PknB) inhibitors show activity against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2012, 22(9), 3349-3353. [http://dx.doi.org/10.1016/j.bmcl.2012.02.107]. [PMID: 22469702].
[112]
Lougheed, K.E.; Osborne, S.A.; Saxty, B.; Whalley, D.; Chapman, T.; Bouloc, N.; Chugh, J.; Nott, T.J.; Patel, D.; Spivey, V.L.; Kettleborough, C.A.; Bryans, J.S.; Taylor, D.L.; Smerdon, S.J.; Buxton, R.S. Effective inhibitors of the essential kinase PknB and their potential as anti-mycobacterial agents. Tuberculosis (Edinb.), 2011, 91(4), 277-286. [http://dx.doi.org/10.1016/j.tube.2011.03.005]. [PMID: 21482481].
[113]
Palomino, J.C.; Ramos, D.F.; da Silva, P.A. New anti-tuberculosis drugs: Strategies, sources and new molecules. Curr. Med. Chem., 2009, 16(15), 1898-1904. [http://dx.doi.org/10.2174/092986709788186066]. [PMID: 19442153].
[114]
Copp, B.R.; Pearce, A.N. Natural product growth inhibitors of Mycobacterium tuberculosis. Nat. Prod. Rep., 2007, 24(2), 278-297. [http://dx.doi.org/10.1039/B513520F]. [PMID: 17389998].
[115]
Gibbons, S.; Fallah, F.; Wright, C.W. Cryptolepine hydrochloride:A potent antimycobacterial alkaloid derived from Cryptolepis sanguinolenta. Phytother. Res., 2003, 17(4), 434-436. [http://dx.doi.org/10.1002/ptr.1284]. [PMID: 12722159].
[116]
Martinez, J.; Silván, A.M.; Abad, M.J.; Bermejo, P.; Villar, A.; Söllhuber, M. Isolation of two flavonoids from Tanacetum microphyllum as PMA-induced ear edema inhibitors. J. Nat. Prod., 1997, 60(2), 142-144. [http://dx.doi.org/10.1021/np960163u]. [PMID: 9051913].
[117]
Suksamrarn, S.; Suwannapoch, N.; Phakhodee, W.; Thanuhiranlert, J.; Ratananukul, P.; Chimnoi, N.; Suksamrarn, A. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem. Pharm. Bull. (Tokyo), 2003, 51(7), 857-859. [http://dx.doi.org/10.1248/cpb.51.857]. [PMID: 12843596].
[118]
Appunni, S.; Rajisha, P.M.; Rubens, M.; Chandana, S.; Singh, H.N.; Swarup, V.; Targeting Pkn, B. Targeting PknB, an eukaryotic-like serine/threonine protein kinase of Mycobacterium tuberculosis with phytomolecules. Comput. Biol. Chem., 2017, 67, 200-204. [http://dx.doi.org/10.1016/j.compbiolchem.2017.01.003]. [PMID: 28131886].
[119]
Sharma, A.; Dutta, P.; Sharma, M.; Rajput, N.K.; Dodiya, B.; Georrge, J.J.; Kholia, T.; Bhardwaj, A.; Consortium, O. BioPhytMol: A drug discovery community resource on anti-mycobacterial phytomolecules and plant extracts. J. Cheminform., 2014, 6(1), 46. [http://dx.doi.org/10.1186/s13321-014-0046-2]. [PMID: 25360160].
[120]
Xu, J.; Wang, J.X.; Zhou, J.M.; Xu, C.L.; Huang, B.; Xing, Y.; Wang, B.; Luo, R.; Wang, Y.C.; You, X.F.; Lu, Y.; Yu, L.Y. A novel protein kinase inhibitor IMB-YH-8 with anti-tuberculosis activity. Sci. Rep., 2017, 7(1), 5093. [http://dx.doi.org/10.1038/s41598-017-04108-7]. [PMID: 28698545].
[121]
Mieczkowski, C.; Iavarone, A.T.; Alber, T. Auto-activation mechanism of the Mycobacterium tuberculosis PknB receptor Ser/Thr kinase. EMBO J., 2008, 27(23), 3186-3197. [http://dx.doi.org/10.1038/emboj.2008.236]. [PMID: 19008858].
[122]
Dasgupta, A.; Datta, P.; Kundu, M.; Basu, J. The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology, 2006, 152(Pt 2), 493-504. [http://dx.doi.org/10.1099/mic.0.28630-0]. [PMID: 16436437].
[123]
Wang, T.; Bemis, G.; Hanzelka, B.; Zuccola, H.; Wynn, M.; Moody, C.S.; Green, J.; Locher, C.; Liu, A.; Gao, H.; Xu, Y.; Wang, S.; Wang, J.; Bennani, Y.L.; Thomson, J.A.; Müh, U. Mtb PKNA/PKNB dual inhibition provides selectivity advantages for inhibitor design to minimize host kinase interactions. ACS Med. Chem. Lett., 2017, 8(12), 1224-1229. [http://dx.doi.org/10.1021/acsmedchemlett.7b00239]. [PMID: 29259738].
[124]
Zahrt, T.C.; Deretic, V. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc. Natl. Acad. Sci. USA, 2001, 98(22), 12706-12711. [http://dx.doi.org/10.1073/pnas.221272198]. [PMID: 11675502].
[125]
Pieters, J. Evasion of host cell defense mechanisms by pathogenic bacteria. Curr. Opin. Immunol., 2001, 13(1), 37-44. [http://dx.doi.org/10.1016/S0952-7915(00)00179-5]. [PMID: 11154915].
[126]
Chen, D.; Ma, S.; He, L.; Yuan, P.; She, Z.; Lu, Y. Sclerotiorin inhibits protein kinase G from Mycobacterium tuberculosis and impairs mycobacterial growth in macrophages. Tuberculosis (Edinb.), 2017, 103, 37-43. [http://dx.doi.org/10.1016/j.tube.2017.01.001]. [PMID: 28237032].
[127]
Anand, N.; Singh, P.; Sharma, A.; Tiwari, S.; Singh, V.; Singh, D.K.; Srivastava, K.K.; Singh, B.N.; Tripathi, R.P. Synthesis and evaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG. Bioorg. Med. Chem., 2012, 20(17), 5150-5163. [http://dx.doi.org/10.1016/j.bmc.2012.07.009]. [PMID: 22854194].
[128]
Chidananda, C.; Rao, L.J.; Sattur, A.P. Sclerotiorin, from Penicillium frequentans, a potent inhibitor of aldose reductase. Biotechnol. Lett., 2006, 28(20), 1633-1636. [http://dx.doi.org/10.1007/s10529-006-9133-4]. [PMID: 16900332].
[129]
Chidananda, C.; Sattur, A.P. Sclerotiorin, a novel inhibitor of lipoxygenase from Penicillium frequentans. J. Agric. Food Chem., 2007, 55(8), 2879-2883. [http://dx.doi.org/10.1021/jf062032x]. [PMID: 17385879].
[130]
Somoza, A.D.; Lee, K.H.; Chiang, Y.M.; Oakley, B.R.; Wang, C.C. Reengineering an azaphilone biosynthesis pathway in Aspergillus nidulans to create lipoxygenase inhibitors. Org. Lett., 2012, 14(4), 972-975. [http://dx.doi.org/10.1021/ol203094k]. [PMID: 22296232].
[131]
Wienken, C.J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun., 2010, 1, 100. [http://dx.doi.org/10.1038/ncomms1093]. [PMID: 20981028].
[132]
Singh, N.; Tiwari, S.; Srivastava, K.K.; Siddiqi, M.I. Identification of novel inhibitors of Mycobacterium tuberculosis PknG using pharmacophore based virtual screening, docking, molecular dynamics simulation, and their biological evaluation. J. Chem. Inf. Model., 2015, 55(6), 1120-1129. [http://dx.doi.org/10.1021/acs.jcim.5b00150]. [PMID: 25965448].
[133]
Kanehiro, Y.; Tomioka, H.; Pieters, J.; Tatano, Y.; Kim, H.; Iizasa, H.; Yoshiyama, H. Identification of novel mycobacterial inhibitors against mycobacterial protein kinase G. Front. Microbiol., 2018, 9, 1517. [http://dx.doi.org/10.3389/fmicb.2018.01517]. [PMID: 30050511].
[134]
Ravala, S.K.; Singh, S.; Yadav, G.S.; Kumar, S.; Karthikeyan, S.; Chakraborti, P.K. Evidence that phosphorylation of threonine in the GT motif triggers activation of PknA, a eukaryotic-type serine/threonine kinase from Mycobacterium tuberculosis. FEBS J., 2015, 282(8), 1419-1431. [http://dx.doi.org/10.1111/febs.13230]. [PMID: 25665034].
[135]
Cavazos, A.; Prigozhin, D.M.; Alber, T. Structure of the sensor domain of Mycobacterium tuberculosis PknH receptor kinase reveals a conserved binding cleft. J. Mol. Biol., 2012, 422(4), 488-494. [http://dx.doi.org/10.1016/j.jmb.2012.06.011]. [PMID: 22727744].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 9
Year: 2019
Page: [646 - 661]
Pages: 16
DOI: 10.2174/1568026619666190227182701
Price: $58

Article Metrics

PDF: 42
HTML: 5
PRC: 1