Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Effect of Chitosan, Chitosan Nanoparticle, Anacyclus pyrethrum and Cyperus rotundus in Combating Plasmid Mediated Resistance in Periodontitis

Author(s): Usha Subbiah*, Gokulalakshmi Elayaperumal, Sonaa Elango, Arvind Ramanathan, Bagavad Gita and Karthikeyan Subramani

Volume 18, Issue 1, 2020

Page: [43 - 53] Pages: 11

DOI: 10.2174/2211352517666190221150743

Abstract

Background: Chitosan, chitosan nanoparticle, ethanolic extracts of Anacyclus pyrethrum root and Cyperus rotundus rhizome were evaluated against plasmid mediated multidrug resistance of Enterococcus faecalis, Staphylococcus aureus and Bacillus sp. isolated from unstimulated saliva of chronic periodontitis. The main aim of the current study centres the reduction of antibiotic consumption and the development of natural compounds to combat multidrug resistance.

Methods: Identification of bacteria, antimicrobial susceptibility, plasmid stability and plasmid curing was carried out for the characterization of resistance plasmids.

Results: E. faecalis showed 89% of sensitivity to chitosan nanoparticle, chitosan 81%, C. Rotundus 69% and A. pyrethrum 62% for S. aureus, with the MIC >100 µg/ml. In comparison with the antimicrobials tested, maximum resistance to tetracycline (89%) for E. faecalis, is followed by ampicillin (87%) and tetracycline (81%) for S. aureus. Meanwhile, chloramphenicol and tetracycline (80%) for Bacillus sp. The plasmid stability for E. faecalis (20%), S. aureus (<4%) and Bacillus sp. (16%). The order of stability corresponding to the broth media is LB ˃ BHI ˃ nutrient for E. faecalis, S. aureus but similar in LB and nutrient broth for bacillus sp. The maximum plasmid curing efficiency of chitosan for S. aureus (76%), Chitosan nanoparticle for E. faecalis (88%), A. pyrethrum for S. aureus (73%), C. rotundus for E. faecalis (87%). The order of plasmid curing efficiency is chitosan nanoparticle>C. rotundus>chitosan>A. pyrethrum.

Conclusion: Chitosan, Chitosan nanoparticle, C. rotundus, and A. pyrethrum offered a greater potential in eliminating plasmid mediated resistance acquired by periodontal pathogens, thus addressing this crisis in dentistry.

Keywords: Chitosan, chitosan nanoparticle, Anacyclus pyrethrum, Cyperus rotundus, plasmid, chronic periodontitis.

Graphical Abstract
[1]
Balic, A.; Thesleff, I. Tissue interactions regulating tooth development and renewal. Curr. Top. Dev. Biol., 2015, 115(4), 157-186.
[http://dx.doi.org/10.1016/bs.ctdb.2015.07.006] [PMID: 26589925 ]
[2]
Heta, S.; Robo, I. The side effects of the most commonly used group of antibiotics in periodontal treatments. Med. Sci., (Basel), 2018, 6(1), 1-6.
[http://dx.doi.org/10.3390/medsci6010006] [PMID: 30720776 ]
[3]
Al Qahtani, N.A.; Joseph, B.; Deepthi, A.; Vijayakumari, B.K. Prevalence of chronic periodontitis and its risk determinants among female patients in the Aseer Region of KSA. J. Taibah Univ. Med. Sci., 2017, 12(3), 241-248.
[http://dx.doi.org/10.1016/j.jtumed.2016.11.012] [PMID: 31435246]
[4]
Foo, J.; Michor, F. Evolution of acquired resistance to anti-cancer therapy. J. Theor. Biol., 2014, 355, 10-20.
[http://dx.doi.org/10.1016/j.jtbi.2014.02.025] [PMID: 24681298]
[5]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 42-49.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[6]
Usha, S.; Gokulalakshmi, E.; Arvind, R.; Sonaa, E. Horizontal gene transfer in plasmid: are we close to eliminating periodontal pathogens? Int. J. Biotech Res., 2017, 7(3), 17-28.
[http://dx.doi.org/10.24247/ijbtrjun20173]
[7]
Salisbury, V.; Hedges, R.W.; Datta, N. Two modes of “curing” transmissible bacterial plasmids. J. Gen. Microbiol., 1972, 70(3), 443-452.
[http://dx.doi.org/10.1099/00221287-70-3-443] [PMID: 4556250]
[8]
Amábile-Cuevas, C.F.; Heinemann, J.A. Shooting the messenger of antibiotic resistance: plasmid elimination as a potential counter-evolutionary tactic. Drug Discov. Today, 2004, 9(11), 465-467.
[http://dx.doi.org/10.1016/S1359-6446(03)02989-1] [PMID: 15149615]
[9]
Brook, I. Microbiology and principles of antimicrobial therapy for head and neck infections., Infect. Dis. Clin. North Am., 2007, 21(2), 355-391. vi
[http://dx.doi.org/10.1016/j.idc.2007.03.014] [PMID: 17561074]
[10]
Raja Mazlan, R.N.A.; Rukayadi, Y.; Maulidiani, M.; Ismail, I.S. Solvent extraction and identification of active anticariogenic metabolites in Piper cubeba L. through 1H-NMR-based metabolomics approach. Molecules, 2018, 23(7), 1730.
[http://dx.doi.org/10.3390/molecules23071730] [PMID: 30012946]
[11]
Husain, S.; Al-Samadani, K.H.; Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Zohaib, S.; Qasim, S.B. Chitosan biomaterials for current and potential dental applications. Materials (Basel), 2017, 10(6), 602.
[http://dx.doi.org/10.3390/ma10060602] [PMID: 28772963]
[12]
Akncbay, H.; Şenel, S.; Ay, Z.Y. Application of chitosan gel in the treatment of chronic periodontitis. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 80(2), 290-296.
[http://dx.doi.org/10.1002/jbm.b.30596] [PMID: 16767723]
[13]
Naik, S.; Raikar, P.; Ahmed, M.G. Formulation and evaluation of chitosan films containing sparfloxacin for the treatment of periodontitis. J. Drug Deliv. Ther., 2019, 9(1), 38-45.
[http://dx.doi.org/10.22270/jddt.v9i1.2245]
[14]
Wardani, G.; Eraik, K.; Koerniasari, S.A.; Sudjarwo, S.A. Protective activity of chitosan nanoparticle against cadmium chloride induced gastric toxicity in rat. J. Young Pharm., 2018, 10(3), 303-307.
[http://dx.doi.org/10.5530/jyp.2018.10.67]
[15]
Pragati, S.; Ashok, S.; Kuldeep, S. Recent advances in periodontal drug delivery systems. Int. J. Drug Deliv., 2009, 1(1), 1-14.
[http://dx.doi.org/10.5138/ijdd.2009.0975.0215.01001]
[16]
Mohammed, M.S.; Sivakumar, S.M.; Aamena, J.; Foziyah, Z.; Farah, I.; Bagul, U.S.; Seyda, S.; Tarique, A.; Rahimullah, S.; Mohammad Abdul, H.S.; Elmobark, M.E.; Barik, B.B.; Mohammad Firoz, A. Therapeutic potential of chitosan nanoparticles as antibiotic delivery system: challenges to treat multiple drug resistance. Asian J. Pharm., 2016, 10(2), S61.
[17]
Annalakshmi, R.; Uma, R.; Chandran, G.S.; Muneeswaran, A. A treasure of medicinal herb-Anacyclus pyrethrum a review. Indian J. Drugs Diseases, 2012, 1(3), 59-67.
[18]
Naderi, N.J.; Niakan, M.; Motlagh, M.M. The antibacterial activity of methanolicAnacyclus pyrethrum and Pistacialentiscus L. extract on Escherichia coli. Iran. J. Microbiol., 2017, 8(6), 372-376.
[PMID: 29487736]
[19]
Buckley, S.; Usai, D.; Jakob, T.; Radini, A.; Hardy, K. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central Sudan. PLoS One, 2014, 9(7)e100808
[http://dx.doi.org/10.1371/journal.pone.0100808] [PMID: 25028938]
[20]
Sivapalan, S.R. Medicinal uses and pharmacological activities of Cyperusrotundus Linn-A Review. IJSRP, 2013, 3(5), 1-8.
[21]
Muzzarelli, R.A.; Rochetti, R. Determination of the degree of deacetylation of chitosan by first derivative ultraviolet spectrophotometry. J. Carbohydr. Polym., 1985, 5, 461-472.
[http://dx.doi.org/10.1016/0144-8617(85)90005-0]
[22]
Gokulalakshmi, E.; Ramalingam, K.; Umasankari, M.; Vanitha, C. Extraction and characterization of chitosan obtained fromsScales of Clariasgariepinus (Catfish). Biotechnol. J. Int., 2017, 18, 1-8.
[23]
Navazesh, M. Methods for collecting saliva. Ann. N. Y. Acad. Sci., 1993, 694(1), 72-77.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb18343.x] [PMID: 8215087]
[24]
Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493] [PMID: 5325707]
[25]
Therese, K.L.; Bagyalakshmi, R.; Madhavan, H.N.; Deepa, P. In-vitro susceptibility testing by agar dilution method to determine the minimum inhibitory concentrations of amphotericin B, fluconazole and ketoconazole against ocular fungal isolates. Indian J. Med. Microbiol., 2006, 24(4), 273-279.
[http://dx.doi.org/10.4103/0255-0857.29386] [PMID: 17185846]
[26]
Krute, C.N.; Krausz, K.L.; Markiewicz, M.A.; Joyner, J.A.; Pokhrel, S.; Hall, P.R.; Bose, J.L. Generation of a stable plasmid for in vitro and in vivo studies of Staphylococcus. Appl. Environ. Microbiol., 2016, 82(23), 6859-6869.
[http://dx.doi.org/10.1128/AEM.02370-16] [PMID: 27637878]
[27]
Brown, T.A. Essential Molecular Biology, A Practical Approach; Oxford University Press, 2000, pp. 69-102.
[28]
Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular cloning: A laboratory manual, 2nd ed; CSH Press: USA, 1989.
[29]
Soman, Y.P.; Mohite, J.A.; Thakre, S.M.; Raokhande, S.R.; Mujumdar, S.S. Plasmid curing activity by seed extracts of cuminum cyminum, coriandrum sativum and myristica fragrans houtt. and fruit peel extracts of orange, banana and pineapple against gram negative bacteria. Int. J. Curr. Microbiol. Appl. Sci., 2015, 2, 302-316.
[30]
Kumar, G.; Jalaluddin, M.; Rout, P.; Mohanty, R.; Dileep, C.L. Emerging trends of herbal care in dentistry. J. Clin. Diagn. Res., 2013, 7(8), 1827-1829.
[PMID: 24086929]
[31]
Wang, Q.Q.; Zhang, C.F.; Chu, C.H.; Zhu, X.F. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis. Int. J. Oral Sci., 2012, 4(1), 19-23.
[http://dx.doi.org/10.1038/ijos.2012.17] [PMID: 22422085]
[32]
Souto, R.; Colombo, A.P. Prevalence of Enterococcus faecalis in subgingival biofilm and saliva of subjects with chronic periodontal infection. Arch. Oral Biol., 2008, 53(2), 155-160.
[http://dx.doi.org/10.1016/j.archoralbio.2007.08.004] [PMID: 17897617]
[33]
Percival, R.S.; Challacombe, S.J.; Marsh, P.D. Age-related microbiological changes in the salivary and plaque microflora of healthy adults. J. Med. Microbiol., 1991, 35(1), 5-11.
[http://dx.doi.org/10.1099/00222615-35-1-5] [PMID: 2072378]
[34]
Geethapriya, N.; Subbiya, A.; Padmavathy, K.; Mahalakshmi, K.; Vivekanandan, P.; Sukumaran, V.G. Effect of chitosan-ethylenediamine tetraacetic acid on Enterococcus faecalis dentinal biofilm and smear layer removal. J. Conserv. Dent., 2016, 19(5), 472-477.
[http://dx.doi.org/10.4103/0972-0707.190022] [PMID: 27656070]
[35]
Ong, T.H.; Chitra, E.; Ramamurthy, S.; Siddalingam, R.P.; Yuen, K.H.; Ambu, S.P.; Davamani, F. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS One, 2017, 12(3)e0174888
[http://dx.doi.org/10.1371/journal.pone.0174888] [PMID: 28362873]
[36]
Kilani-Jaziri, S.; Bhouri, W.; Skandrani, I.; Limem, I.; Chekir-Ghedira, L.; Ghedira, K. Phytochemical, antimicrobial, antioxidant and antigenotoxic potentials of Cyperusrotundus extracts. S. Afr. J. Bot., 2011, 77(3), 767-776.
[http://dx.doi.org/10.1016/j.sajb.2011.03.015]
[37]
Fuda, C.C.; Fisher, J.F.; Mobashery, S. β-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell. Mol. Life Sci., 2005, 62(22), 2617-2633.
[http://dx.doi.org/10.1007/s00018-005-5148-6] [PMID: 16143832]
[38]
Ogawara, H. Penicillin-binding proteins in Actinobacteria. J. Antibiot. (Tokyo), 2015, 68(4), 223-245.
[http://dx.doi.org/10.1038/ja.2014.148] [PMID: 25351947]
[39]
Trieu-Cuot, P.; de Cespédès, G.; Bentorcha, F.; Delbos, F.; Gaspar, E.; Horaud, T. Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: characterization of a new CAT determinant. Antimicrob. Agents Chemother., 1993, 37(12), 2593-2598.
[http://dx.doi.org/10.1128/AAC.37.12.2593] [PMID: 8109922]
[40]
Chopra, I.; Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001, 65(2), 232-260.
[http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001] [PMID: 11381101]
[41]
Choi, J.M.; Woo, G.J. Transfer of tetracycline resistance genes with aggregation substance in food-borne Enterococcus faecalis. Curr. Microbiol., 2015, 70(4), 476-484.
[http://dx.doi.org/10.1007/s00284-014-0742-1] [PMID: 25487115]
[42]
Bose, J.L.; Fey, P.D.; Bayles, K.W. Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus. Appl. Environ. Microbiol., 2013, 79(7), 2218-2224.
[http://dx.doi.org/10.1128/AEM.00136-13] [PMID: 23354696]
[43]
Marston, C.K.; Hoffmaster, A.R.; Wilson, K.E.; Bragg, S.L.; Plikaytis, B.; Brachman, P.; Johnson, S.; Kaufmann, A.F.; Popovic, T. Effects of long-term storage on plasmid stability in Bacillus anthracis. Appl. Environ. Microbiol., 2005, 71(12), 7778-7780.
[http://dx.doi.org/10.1128/AEM.71.12.7778-7780.2005] [PMID: 16332750]
[44]
Usha, S.; Gokulalakshmi, E.; Sonaa, E. Plasmid mediated antibiotic resistance in E. coli isolated from chronic periodontitis. Eur. J. Biomed. Pharma. Sci., 2017, 4(6), 395-399.

© 2024 Bentham Science Publishers | Privacy Policy