Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Hypoglycemic Effect of Calendula arvensis Flowers is Mediated by Digestive Enzyme Inhibition

Author(s): Abdul-Malik Abudunia, Ilias Marmouzi*, Mourad Kharbach, Meryem El Jemli, Karima Sayah, Abdelhakim Bouyahya, Ali Al-kaf, Ali Alyahawi, M’Hammed Ansar, Abdelaziz Bouklouze, My El Abbes Faouzi and Azeddine Ibrahimi

Volume 16, Issue 5, 2020

Page: [588 - 592] Pages: 5

DOI: 10.2174/1573407215666190219094407

Price: $65

Abstract

Background: Calendula arvensis is an annual Mediterranean plant growing in Morocco between Rabat and Khemissat. C. arvensisis is known in folk medicine as an anti-inflammatory and antipyretic remedy. However, few reports have investigated its pharmacological properties.

Methods: The objective of the present study was to determine chemical composition of C. arvensis flowers, and to investigate their antidiabetic activities by mean of digestive enzyme inhibition. The profile of phenolic compounds was established by HPLC-DAD-QTOF-MS analysis. While the antidiabetic activity was evaluated by the in vitro enzyme inhibition assays.

Results: Phytochemical analysis revealed the presence of anthocyanins, flavonoids, tannins, and saponins as major elements. Whereas, alkaloids and terpenes were not detected in the plant samples. The chromatographic quantification identified 18 metabolites, with the caffeic acid as a major element. C. arvensis aqueous and methanolic extracts exhibited higher inhibitory potential against α-amylase, α- glucosidase and ß-galactosidase compared to the hexanic extract.

Conclusion: The present study brings evidence to the hypoglycemic effect of C. arvensis flowers through enzyme inhibitory activities, and identifies the possible phenolic compounds associated with this activity.

Keywords: Calendula arvensis, phenolic compound, diabetes, α–amylase, α-glucosidase, ß-galactosidase.

Graphical Abstract
[1]
Ferraù, F.; Albani, A.; Ciresi, A.; Giordano, C.; Cannavò, S. Diabetes secondary to acromegaly: Physiopathology, clinical features and effects of treatment. Front. Endocrinol. (Lausanne), 2018, 9, 358.
[http://dx.doi.org/10.3389/fendo.2018.00358] [PMID: 30034367]
[2]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[3]
Abdi, H.; Azizi, F.; Amouzegar, A. Insulin monotherapy versus insulin combined with other glucose-lowering agents in type 2 diabetes: A narrative review. Int. J. Endocrinol. Metab., 2018, 16(2)e65600
[http://dx.doi.org/10.5812/ijem.65600] [PMID: 30008760]
[4]
Habtemariam, S. Antidiabetic potential of monoterpenes: A case of small molecules punching above their weight. Int. J. Mol. Sci., 2017, 19(1) E4
[http://dx.doi.org/10.3390/ijms19010004] [PMID: 29267214]
[5]
Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res., 2018, 130, 451-465.
[http://dx.doi.org/10.1016/j.phrs.2018.01.015] [PMID: 29395440]
[6]
De Clavijo, R. The reproductive strategies of the heterocarpic annual Calendula arvensis (Asteraceae). Acta. Ocol., 2005, 28, 119-126.
[http://dx.doi.org/10.1016/j.actao.2005.03.004]
[7]
Paolini, J.; Barboni, T. Chemical composition, intraspeciesvaria-tion and seasonal variation in essential oils of Calendula arvensis L. Biochem. Syst. Ecol., 2010, 38865-38874.
[8]
De Tommasi, N.; Pizza, C.; Conti, C.; Orsi, N.; Stein, M.L. Structure and in vitro antiviral activity of sesquiterpene glycosides from Calendula arvensis. J. Nat. Prod., 1990, 53(4), 830-835.
[http://dx.doi.org/10.1021/np50070a009] [PMID: 1965654]
[9]
Abudunia, A.M.; Marmouzi, I.; Faouzi, M.E.; Ramli, Y.; Taoufik, J.; El Madani, N.; Essassi, E.M.; Salama, A.; Khedid, K.; Ansar, M.; Ibrahimi, A. Anticandidal, antibacterial, cytotoxic and antioxidant activities of Calendula arvensis flowers. J. Mycol. Med., 2017, 27(1), 90-97.
[http://dx.doi.org/10.1016/j.mycmed.2016.11.002] [PMID: 28011127]
[10]
Belabbes, R.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J.; Muselli, A. Chemical variability, antioxidant and antifungal activities of essential oils and hydrosol extract of Calendula arvensis L. from Western Algeria. Chem. Biodivers., 2017, 14(5)
[http://dx.doi.org/10.1002/cbdv.201600482] [PMID: 28109063]
[11]
Harbone, J.B. Phytochemical Methods. London; Chapman and Hill, 1973.
[12]
Paris, M.; Moyse, M.H. Matière médicinale, I, 2nd édition; Masson: Paris, 1965.
[13]
Tyler, V. Phytomedicines in Western Europe: Their potential impact on herbal medicine in the United States Herbalgram 1994, 30, 24-30.
[14]
Marmouzi, I.; El Karbane, M.; El Hamdani, M.; Kharbach, M.; Naceiri Mrabti, H.; Alami, R.; Dahraoui, S.; El Jemli, M.; Ouzzif, Z.; Cherrah, Y.; Derraji, S.; Faouzi, M.E.A. Phytochemical and pharmacological variability in Golden Thistle functional parts: comparative study of roots, stems, leaves and flowers. Nat. Prod. Res., 2017, 31(22), 2669-2674.
[http://dx.doi.org/10.1080/14786419.2017.1283494] [PMID: 28152614]
[15]
Kee, K.T.; Koh, M.; Oong, L.X.; Ng, K. Screening culinary herbs for antioxidant and α-glucosidase inhibitory activities. Int. J. Food Sci. Technol., 2013, 48, 1884-1891.
[http://dx.doi.org/10.1111/ijfs.12166]
[16]
Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. anticancer properties of essential oils and other natural products. Evid. Based Complement. Alternat. Med., 2018, 20183149362
[http://dx.doi.org/10.1155/2018/3149362] [PMID: 29765461]
[17]
Lahlou, M. The success of natural products in drug discovery. Pharmacol. Pharm., 2013, 4, 17-31.
[http://dx.doi.org/10.4236/pp.2013.43A003]
[18]
Ma, Q.; Li, Y.; Wang, M.; Tang, Z.; Wang, T.; Liu, C.; Wang, C.; Zhao, B. Progress in metabonomics of type 2 diabetes mellitus. Molecules, 2018, 23(7)E1834
[http://dx.doi.org/10.3390/molecules23071834] [PMID: 30041493]
[19]
Petersen, J.L.; McGuire, D.K. Impaired glucose tolerance and impaired fasting glucose--a review of diagnosis, clinical implications and management. Diab. Vasc. Dis. Res., 2005, 2(1), 9-15.
[http://dx.doi.org/10.3132/dvdr.2005.007] [PMID: 16305067]
[20]
Anuradha, C.V. Phytochemicals targeting genes relevant for type 2 diabetes. Can. J. Physiol. Pharmacol., 2013, 91(6), 397-411.
[http://dx.doi.org/10.1139/cjpp-2012-0350] [PMID: 23745945]
[21]
Dada, F.A.; Oyeleye, S.I.; Ogunsuyi, O.B.; Olasehinde, T.A.; Adefegha, S.A.; Oboh, G.; Boligon, A.A. Phenolic constituents and modulatory effects of Raffia palm leaf (Raphia hookeri) extract on carbohydrate hydrolyzing enzymes linked to type-2 diabetes. J. Tradit. Complement. Med., 2017, 7(4), 494-500.
[http://dx.doi.org/10.1016/j.jtcme.2017.01.003] [PMID: 29034198]
[22]
Zakłos-Szyda, M.; Majewska, I.; Redzynia, M.; Koziołkiewicz, M. Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase, α -glucosidase and PTP1B inhibitors, and β pancreatic cells cytoprotective agents - a comparative study. Curr. Top. Med. Chem., 2015, 15(23), 2431-2444.
[http://dx.doi.org/10.2174/1568026615666150619143051] [PMID: 26088348]
[23]
Moradkhani, S.; Salehi, I.; Abdolmaleki, S.; Komaki, A. Effect of Calendula officinalis hydroalcoholic extract on passive avoidance learning and memory in streptozotocin-induced diabetic rats. Anc. Sci. Life, 2015, 34(3), 156-161.
[http://dx.doi.org/10.4103/0257-7941.157160] [PMID: 26120230]
[24]
Ebrahimi, E.; Shirali, S.; Talaei, R. The protective effect of marigold hydroalcoholic extract in STZ-induced diabetic rats: Evaluation of cardiac and pancreatic biomarkers in the serum. J. Bot., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/9803928]
[25]
Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res. Notes, 2014, 7, 560.
[http://dx.doi.org/10.1186/1756-0500-7-560] [PMID: 25145266]
[26]
Martinez-Gonzalez, A.I.; Díaz-Sánchez, A.G.; Rosa, L.A.; Vargas-Requena, C.L.; Bustos-Jaimes, I.; Alvarez-Parrilla, A.E. Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions. Molecules, 2017, 22(4), 669.
[http://dx.doi.org/10.3390/molecules22040669] [PMID: 28441731]
[27]
Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother., 2017, 96, 305-312.
[http://dx.doi.org/10.1016/j.biopha.2017.10.001] [PMID: 29017142]
[28]
Ganeshpurkar, A.; Saluja, A.K. Mechanisms of antidiabetic effects of flavonoid rutin. Saudi Pharm. J., 2017, 25, 149-164.
[29]
Habtemariam, S.; Lentini, G. The therapeutic potential of rutin for diabetes: an update. Mini Rev. Med. Chem., 2015, 15(7), 524-528.
[http://dx.doi.org/10.2174/138955751507150424103721] [PMID: 25934979]
[30]
Giovannini, P.; Howes, M.J.; Edwards, S.E. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. J. Ethnopharmacol., 2016, 184, 58-71.
[http://dx.doi.org/10.1016/j.jep.2016.02.034] [PMID: 26924564]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy