Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Graphene Oxide and Its Derivatives: Their Synthesis and Use in Organic Synthesis

Author(s): Xiangjun Peng, Xianyun Xu, Fujiang Huang, Qian Liu* and Liangxian Liu*

Volume 23, Issue 2, 2019

Page: [188 - 204] Pages: 17

DOI: 10.2174/1385272823666190213122158

Price: $65

Abstract

Since Geim and co-workers reported their groundbreaking experiments on graphene, research on graphene oxide (GO) and its derivatives has greatly influenced the field of modern physics, chemistry, device fabrication, material science, and nanotechnology. The unique structure and fascinating properties of these carbon materials can be ascribed to their eminent chemical, electronic, electrochemical, optical, and mechanical properties of GO and its derivatives, particularly compared to other carbon allotropes. The present Review aims to provide an overview on the recent developments in the preparation of GO and its derivatives and their applications in organic reactions. We will first outline the synthesis of GO and its derivatives. Then, we will discuss the major sections about their application as stoichiometric and catalytic oxidants in organic reactions, a particular emphasis on the carbon-carbon, carbon-oxygen, and carbon-nitrogen single bond-forming reactions, as well as carbon-oxygen and carbon-nitrogen double bond-forming reactions. Simultaneously, this Review also describes briefly transition metal supported on GO or its derivatives as a catalyst for organic reaction. Lastly, we will present an outlook of potential areas where GO and its derivatives may be expected to find utility or opportunity for further growth and study.

Keywords: Graphene oxide, reduced graphene oxide, graphene, carbocatalyst, oxidation, reduction.

Graphical Abstract
[1]
Fernández-Marino, M.J.; Guardia, L.; Paredes, J.I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J.M.D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C, 2010, 114, 6426-6432.
[2]
Li, X.; Wang, H.; Robinson, J.T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc., 2009, 131, 15939-15944.
[3]
Scheuermann, G.M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction. J. Am. Chem. Soc., 2009, 131, 8262-8270.
[4]
a) Gao, Y.-J.; Ma, D.; Wang, L.; Guan, J.; Bao, X.-H. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun., 2011, 47, 2432-2434.
[5]
Zhu, Z-P.; Su, D-S.; Weinberg, G.; Schlögl, R. Super molecular selfassembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett., 2004, 4, 2255-2259.
[6]
Erickson, K.; Erni, R.; Lee, Z.H.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater., 2010, 22, 4467-4472.
[7]
Jafri, R.I.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem., 2010, 20, 7114-7117.
[8]
Li, Y.; Fan, X-B.; Qi, J-J.; Ji, J-Y.; Wang, S-L.; Zhang, G-L.; Zhang, F-B. Palladium nanoparticle–graphene hybrids as active catalysts for the Suzuki reaction. Nano Res., 2010, 3, 429-437.
[9]
Yoo, E.J.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett., 2009, 9, 2255-2259.
[10]
Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed., 2002, 41, 1853-1859.
[11]
Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev., 2006, 106, 1105-1136.
[12]
Eigler, S.; Hirsch, A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew. Chem. Int. Ed., 2014, 53, 7720-7738.
[13]
Watanabe, H.; Asano, S.; Fujita, S-I.; Yoshida, H.; Arai, M. Nitrogen-doped, metal-free activated carbon catalysts for aerobic oxidation of alcohols. ACS Catal., 2015, 5, 2886-2894.
[14]
Li, W.; Gao, Y.; Chen, W.; Tang, P.; Li, W.; Shi, Z.; Su, D.; Wang, J.; Ma, D. Catalytic epoxidation reaction over N-containing sp2 carbon catalysts. ACS Catal., 2014, 4, 1261-1266.
[15]
Duan, X.; O’Donnell, K.; Sun, H.; Wang, Y.; Wang, S. Sulfur and nitrogen Co-doped graphene for metal-free catalytic oxidation reactions. Small, 2015, 11, 3036-3044.
[16]
Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev., 2014, 114, 6179-6212.
[17]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39, 228-240.
[18]
Dreyer, D.R.; Todd, A.D.; Bielawski, C.W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev., 2014, 43, 5288-5301.
[19]
Dreyer, D.R.; Bielawski, C.W. Carbocatalysis: heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci., 2011, 2, 1233-1240.
[20]
Chua, C.K.; Pumera, M. Carbocatalysis: The state of “metal-free” catalysis. Chem. Eur. J., 2015, 21, 12550-12562.
[21]
Su, C-L.; Loh, K-P. Carbocatalysts: graphene oxide and its derivatives. Acc. Chem. Res., 2013, 46, 2275-2285.
[22]
Coraux, J.; Marty, L.; Bendiab, N.; Bouchiat, V. Functional hybrid systems based on large-area high-quality graphene. Acc. Chem. Res., 2013, 46, 2193-2201.
[23]
Koehler, F.M.; Stark, W.J. Organic synthesis on graphene. Acc. Chem. Res., 2013, 46, 2297-2306.
[24]
Lam, E.; Luong, J.H.T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal., 2014, 4, 3393-3410.
[25]
Roy-Mayhew, J.D.; Aksay, I.A. Graphene materials and their use in dye-sensitized solar cells. Chem. Rev., 2014, 114, 6323-6348.
[26]
Ciriminna, R.; Zhang, R.; Yang, M-Q.; Meneguzzo, F.; Xu, Y-J.; Pagliaro, M. Commercialization of graphene-based technologies: a critical insight. Chem. Commun., 2015, 51, 7090-7095.
[27]
Kong, X-K.; Chen, C-L.; Chen, Q-W. Doped graphene for metal-free catalysis. Chem. Soc. Rev., 2014, 43, 2841-2857.
[28]
Brodie, B.C. XIII. On the atomic weight of graphite. Philos. Trans. R. Soc. London., 1859, 149, 249-259.
[29]
Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges., 1898, 31, 1481-1487.
[30]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80, 1339-1339.
[31]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4, 4806-4814.
[32]
Zhu, C-Z.; Guo, S-J.; Fang, Y-X.; Dong, S-J. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 2010, 4, 2429-2437.
[33]
Compton, O.C.; Nguyen, S.T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small, 2010, 6, 711-723.
[34]
Dreyer, D.R.; Murali, S.; Zhu, Y.; Ruoff, R.S.; Bielawski, C.W. Reduction of graphite oxide using alcohols. J. Mater. Chem., 2011, 21, 3443-3447.
[35]
Liu, J-B.; Fu, S-H.; Yuan, B.; Li, Y-L.; Deng, Z-X. Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc., 2010, 132, 7279-7281.
[36]
Parvez, K.; Li, R-J.; Puniredd, S.R.; Hernandez, Y.; Hinkel, F.; Wang, S-H.; Feng, X-L.; Müllen, K. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 2013, 7, 3598-3606.
[37]
Parvez, K.; Wu, Z-S.; Li, R-J.; Liu, X-J.; Graf, R.; Feng, X-L.; Müllen, K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc., 2014, 136, 6083-6091.
[38]
Parvez, K.; Rincón, R.A.; Weber, N-E.; Cha, K.C.; Venkataraman, S.S. One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality graphene oxide. Chem. Commun., 2016, 52, 5714-5717.
[39]
Abdelkader, A.M.; Kinloch, I.A.; Dryfe, R.A.W. High-yield electro-oxidative preparation of graphene oxide. Chem. Commun., 2014, 50, 8402-8404.
[40]
Singh, V.V.; Gupta, P.; Batra, A.; Nigam, A.K.; Boopathi, M.; Gutch, P.K.; Tripathi, B.K.; Srivastava, A.; Samuel, M.; Agarwal, G.S.; Singh, B.; Vijayaraghavan, R. Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application. Adv. Funct. Mater., 2012, 22, 2352-2362.
[41]
Liu, J.; Yang, H.; Zhen, S-G.; Poh, C.K.; Chaurasia, A.; Luo, J.; Wu, X.; Yeow, E.K.L.; Sahoo, N.G.; Lin, J.; Shen, Z. A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Adv, 2013, 3, 11745-11750.
[42]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: a review of graphene. Chem. Rev., 2010, 110, 132-145.
[43]
Huang, C-C.; Li, C.; Shi, G-Q. Graphene based catalysts. Energy Environ. Sci., 2012, 5, 8848-8868.
[44]
Wang, H-B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal., 2012, 2, 781-794.
[45]
Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem., 2008, 18, 4893-4908.
[46]
Mabena, L.F.; Sinha Ray, S.; Mhlanga, S.D.; Coville, N. Nitrogen-doped carbon nanotubes as a metal catalyst support. J. Appl. Nanosci, 2011, 1, 67-77.
[47]
Su, D-S.; Zhang, J.; Frank, B.; Thomas, A.; Wang, X.; Paraknowitsch, J.; Schlögl, R. Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem, 2010, 3, 169-180.
[48]
Qu, L-T.; Liu, Y.; Baek, J.B.; Dai, L-M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4, 1321-1326.
[49]
Lee, K.R.; Lee, K.U.; Lee, J.W.; Ahn, B.T.; Woo, S.I. Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electrochem. Commun., 2010, 12, 1052-1055.
[50]
Zhang, L-P.; Niu, J-B.; Dai, L-M.; Xia, Z-H. Effect of microstructure of nitrogen-noped graphene on oxygen reduction activity in fuel cells. Langmuir, 2012, 28, 7542-7550.
[51]
Li, X-H.; Antonietti, M. Polycondensation of boron-and nitrogen-codoped holey graphene monoliths from molecules: carbocatalysts for selective oxidation. Angew. Chem. Int. Ed., 2013, 52, 4572-4576.
[52]
Long, J-L.; Xie, X-Q.; Xu, J.; Gu, Q.; Chen, L-M.; Wang, X-X. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catal., 2012, 2, 622-631.
[53]
Wang, X-Y.; Zhang, L-P.; Xia, Z-H.; Roy, A.; Chang, D-W.; Baek, J-B.; Dai, L-M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed., 2012, 51, 4209-4212.
[54]
Sheng, Z-H.; Zheng, X-Q.; Xu, J-Y.; Bao, W-J.; Wang, F-B.; Xia, X-H. Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron., 2012, 34, 125-131.
[55]
Kong, X-K.; Sun, Z-Y.; Chen, M.; Chen, C-L.; Chen, Q-W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by n-doped graphene. Energy Environ. Sci., 2013, 6, 3260-3266.
[56]
Primo, A.; Neatu, F.; Florea, M.; Parvulescu, V.; Garcia, H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nat. Commun., 2014, 5, 5291-5300.
[57]
a)Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
b)Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6, 183-191.
[58]
Jiang, D-E.; Sumpter, B.G.; Dai, S. Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys., 2007, 126, 134701-134724.
[59]
Chua, C.K.; Pumera, M. Chem. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev., 2014, 43, 291-312.
[60]
Some, S.; Kim, Y.; Yoon, Y.; Yoo, H.; Lee, S.; Park, Y.; Lee, H. High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep., 2013, 3, 1929-1933.
[61]
Lόpez, V.; Sundaram, R.S.; Gόmez-Navarro, C.; Olea, D.; Burghard, M.; Gόmez-Herrero, J.; Zamora, F.; Kern, K. Chemical vapor deposition repair of graphene oxide: a route to highly-conductive graphene monolayers. Adv. Mater., 2009, 21, 4683-4686.
[62]
Li, Y-J.; Li, Y-J.; Zhu, E-B.; McLouth, T.; Chiu, C-Y.; Huang, X-Q.; Huang, Y. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J. Am. Chem. Soc., 2012, 134, 12326-12329.
[63]
Sidhureddy, B.; Thiruppathi, A.R.; Chen, A-C. From graphite to interconnected reduced graphene oxide: one-pot synthesis and supercapacitor application. Chem. Commun., 2017, 53, 7828-7831.
[64]
Jahan, M.; Bao, Q-L.; Loh, K-P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc., 2012, 134, 6707-6713.
[65]
Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev., 2014, 114, 7150-7188.
[66]
Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K.A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Carfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater., 2009, 19, 2577-2583.
[67]
Reddy, B.M.; Patil, M.K. Organic syntheses and transformations catalyzed by sulfated zirconia. Chem. Rev., 2009, 109, 2185-2208.
[68]
Busca, G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev., 2007, 107, 5366-5410. c) Stein, A.; Wang, Z.-Y.; Fierke, M.A. Functionalization of porous carbon materials with designed pore architecture. Adv. Mater., 2009, 21, 265-293.
[69]
Ji, J-Y.; Zhang, G-H.; Chen, H-Y.; Wang, S-L.; Zhang, G-L.; Zhang, F-B.; Fan, X-B. Sulfonated graphene as water-tolerant solid acid catalyst. Chem. Sci., 2011, 2, 484-487.
[70]
Zhang, F.; Jiang, H-Y.; Li, X-Y.; Wu, X-T.; Li, H-X. Amine-functionalized GO as an active and reusable acid-base bifunctional catalyst for one-pot cascade reactions. ACS Catal., 2014, 4, 394-401.
[71]
Guo, S-J.; Sun, S-H. Fept Nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc., 2012, 134, 2492-2495.
[72]
Zhang, J-L.; Yang, H-J.; Shen, G-X.; Cheng, P.; Zhang, J-Y.; Guo, S-W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun., 2010, 46, 1112-1114.
[73]
Wu, Z-S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H-M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 2009, 47, 493-499.
[74]
Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater., 2008, 20, 4490-4493.
[75]
Dreyer, D.R.; Jia, H-P.; Bielawski, C.W. Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed., 2010, 49, 6813-6816.
[76]
Wang, H-L.; Deng, T-S.; Wang, Y-X.; Cui, X-J.; Qi, Y-Q.; Mu, X-D.; Hou, X-L.; Zhu, Y-L. Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chem., 2013, 15, 2379-2383.
[77]
Zhu, S-H.; Chen, C-M.; Xue, Y-F.; Wu, J-B.; Wang, J-G.; Fan, W-B. Graphene oxide: an efficient acid catalyst for alcoholysis and esterification reactions. ChemCatChem, 2014, 6, 3080-3083.
[78]
Hayashi, M. Oxidation using activated carbon and molecular oxygen system. Chem. Rec., 2008, 8, 252-267.
[79]
Bitter, J.H. Nanostructured carbons in catalysis a Janus material-industrial applicability and fundamental insights. J. Mater. Chem., 2010, 20, 7312-7321.
[80]
Wang, Y.; Wang, X-C. Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed., 2012, 51, 68-69.
[81]
Jia, H-P.; Dreyer, D.R.; Bielawski, C.W. C–H oxidation using graphite oxide. Tetrahedron, 2011, 67, 4431-4434.
[82]
Lv, G-Q.; Wang, H-L.; Yang, Y-X.; Deng, T-S.; Chen, C-M.; Zhu, Y-L.; Hou, X-L. Graphene oxide: a convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran. ACS Catal., 2015, 5, 5636-5646.
[83]
Su, C.; Acik, M.; Takai, K.; Lu, J.; Hao, S-j.; Zheng, Y.; Wu, P.; Bao, Q.; Enoki, T.; Chabal, Y.J.; Loh, K.P. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun., 2012, 3, 1298-1307.
[84]
Dreyer, D.R.; Jia, H-P.; Todd, A.D.; Geng, J-X.; Bielawski, C.W. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem., 2011, 9, 7292-7295.
[85]
Jia, H-P.; Dreyer, D.R.; Bielawski, C.W. Graphite oxide as an auto-tandem oxidation–hydration–aldol coupling catalyst. Adv. Synth. Catal., 2011, 353, 528-532.
[86]
Primo, A.; Puche, M.; Pavel, O.D.; Cojocaru, B.; Tirsoaga, A.; Parvulescu, V.; Garcia, H. Graphene oxide as a metal-free catalyst for oxidation of primary amines to nitriles by hypochlorite. Chem. Commun., 2016, 52, 1839-1842.
[87]
Hayashi, Y.; Rode, J.J.; Corey, E.J. A novel chiral super-Lewis acidic catalyst for enantioselective synthesis. J. Am. Chem. Soc., 1996, 118, 5502-5503.
[88]
Xu, L-W.; Xia, C-G.; Hu, X-X. An efficient and inexpensive catalyst system for the aza-Michael reactions of enones with carbamates. Chem. Commun., 2003, 2570-2571.
[89]
Verma, S.; Mungse, H.P.; Kumar, N.; Choudhary, S.; Jain, S.L.; Sain, B.; Khatri, O.P. Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun., 2011, 47, 12673-12675.
[90]
Dhakshinamoorthy, A.; Alvaro, M.; Concepciόn, P.; Fornés, V.; Garcia, H. Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chem. Commun., 2012, 48, 5443-5445.
[91]
Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res., 2002, 35, 695-705.
[92]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39, 301-312.
[93]
McGlacken, G.P.; Bateman, L.M. Recent advances in aryl–aryl bond formation by direct arylation. Chem. Soc. Rev., 2009, 38, 2447-2464.
[94]
Hussain, I.; Singh, T. Synthesis of biaryls through aromatic C-H bond activation: a review of recent developments. Adv. Synth. Catal., 2014, 356, 1661-1696.
[95]
Su, C-L.; Tandiana, R.; Balapanuru, J.; Tang, W.; Pareek, K.; Nai, C-T.; Hayashi, T.; Loh, K-P. Tandem catalysis of amines using porous graphene oxide. J. Am. Chem. Soc., 2015, 137, 685-690.
[96]
Huang, H.; Huang, J.; Liu, Y-M.; He, H-Y.; Cao, Y.; Fan, K-N. Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chem., 2012, 14, 930-934.
[97]
Pan, Y-H.; Wang, S.; Kee, C-W.; Dubuisson, E.; Yang, Y-Y.; Loh, K-P.; Tan, C-H. Graphene oxide and Rose Bengal: oxidative C–H functionalisation of tertiary amines using visible light. Green Chem., 2011, 13, 3341-3344.
[98]
Gao, Y-J.; Tang, P.; Zhou, H.; Zhang, W.; Yang, H-J.; Yan, N.; Hu, G.; Mei, D-H.; Wang, J-G.; Ma, D. Graphene oxide catalyzed C-H bond activation: the importance of oxygen functional groups for biaryl construction. Angew. Chem. Int. Ed., 2016, 55, 3124-3128.
[99]
Buchmeiser, M.R. Polymer-supported well-defined metathesis catalysts. Chem. Rev., 2009, 109, 303-321.
[100]
Fraile, J.M.; García, J.I.; Mayoral, J.A. Noncovalent immobilization of enantioselective catalysts. Chem. Rev., 2009, 109, 360-417.
[101]
Benaglia, M.; Puglisi, A.; Cozzi, F. Polymer-supported organic catalysts. Chem. Rev., 2003, 103, 3401-3430.
[102]
Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv, 2012, 2, 4547-4592.
[103]
McAllister, M.J.; Li, J-L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; Aksay, I.A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater., 2007, 19, 4396-4404.
[104]
Zhang, X.; Ji, X.; Su, R.; Weeks, B.L.; Zhang, Z.; Deng, S. Aerobic oxidation of 9H-fluorenes to 9-fluorenones using mono-/multilayer graphene-supported alkaline catalyst. ChemPlusChem, 2013, 78, 703-711.
[105]
Li, X-H.; Chen, J-S.; Wang, X.; Sun, J.; Antonietti, M. Metal-free activation of dioxygen by graphene/gc3n4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. J. Am. Chem. Soc., 2011, 133, 8074-8077.
[106]
Dhakshinamoorthy, A.; Primo, A.; Concepcion, P.; Alvaro, M.; Garcia, H. Doped graphene as a metal-free carbocatalyst for the selective aerobic oxidation of benzylic hydrocarbons, cyclooctane and styrene. Chem.-Eur. J., 2013, 19, 7547-7554.
[107]
a) Gao, Y.-J.; Hu, G.; Zhong, J.; Shi, Z.-J.; Zhu, Y.-S.; Su, D.-S.; Wang, J.-G.; Bao, X.-H; Ma, D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem. Int. Ed., 2013, 52, 2109-2113.
[108]
Tang, P.; Gao, Y-J.; Yang, J-H.; Li, W-J.; Zhao, H-B.; Ma, D. Growth mechanism of N-doped graphene materials and their catalytic behavior in the selective oxidation of ethylbenzene. Chin. J. Catal., 2014, 35, 922-928.
[109]
Yang, J-He.; Sun, G.; Gao, Y-J.; Zhao, H-B.; Tang, P.; Tan, J.; Lu, A-H.; Ma, D. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy Environ. Sci., 2013, 6, 793-798.
[110]
Singh, A.K.; Basavaraju, K.C.; Sharma, S.; Jang, S.; Park, C.P.; Kim, D-P. Eco-efficient preparation of a N-doped graphene equivalent and its application to metal free selective oxidation reaction. Green Chem., 2014, 16, 3024-3030.
[111]
Pavel, O.D.; Cojocaru, B.; Angelescu, E.; Pârvulescu, V.I. The activity of yttrium-modified Mg, Al hydrotalcites in the epoxidation of styrene with hydrogen peroxide. Appl. Catal., A , 2011, 403, 83-90.
[112]
Murphy, A.; Dubois, G.; Stack, T.D.P. Efficient epoxidation of electron-deficient olefins with a cationic manganese complex. J. Am. Chem. Soc., 2003, 125, 5250-5251.
[113]
Gelder, E.A.; Jackson, S.D.; Lok, C.M. A Study of nitrobenzene hydrogenation over palladium/carbon catalysts. Catal. Lett., 2002, 84, 205-208.
[114]
Nie, R-F.; Wang, J-H.; Wang, L-N.; Qin, Y.; Chen, P.; Hou, Z-Y. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon, 2012, 50, 586-596.
[115]
Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed., 2011, 50, 6234-6246.
[116]
Toure, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109, 4439-4486.
[117]
Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chem.-Eur. J., 2009, 15, 1300-1308.
[118]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106, 17-89.
[119]
Santra, S.; Andreana, P.R. A bioinspired Ugi/Michael/aza-Michael cascade reaction in aqueous media: natural-product-like molecular diversity. Angew. Chem. Int. Ed., 2011, 50, 9418-9422.
[120]
Wang, X.; Wang, S-Y.; Ji, S-J. Isocyanide-based multicomponent reactions: catalyst-free stereoselective construction of polycyclic spiroindolines. Org. Lett., 2013, 15, 1954-1957.
[121]
Riva, R.; Banfi, L.; Basso, A.; Cerulli, V.; Guanti, G.; Pani, M. A highly convergent synthesis of tricyclic N-heterocycles coupling an Ugi reaction with a Tandem SN2′-Heck double cyclization. J. Org. Chem., 2010, 75, 5134-5143.
[122]
Qiu, G.; He, Y.; Wu, J. Preparation of quinazolino [3, 2-a] quinazolines via a palladium-catalyzed three-component reaction of carbodiimide, isocyanide, and amine. Chem. Commun., 2012, 48, 3836-3838.
[123]
Zhang, N.; Zhang, Y.; Xu, Y-J. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 2012, 4, 5792-5813.
[124]
Yang, M-Q.; Xu, Y-J. Selective photoredox using graphene-based composite photocatalysts. Phys. Chem. Chem. Phys., 2013, 15, 19102-19118.
[125]
Yang, M-Q.; Zhang, N.; Pagliaro, M.; Xu, Y-J. Artificial photosynthesis over graphene–semiconductor composites. Are we getting better? Chem. Soc. Rev., 2014, 43, 8240-8254.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy