Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Development of a Gold Nanoparticle-labeled Sandwich Format Lateral Flow Immunoassay Kit for the Detection of Tropical House Dust Mite Suidasia pontifica

Author(s): Mark Angelo V. Ngu*, Jose H. Bergantin and John Donnie A. Ramos

Volume 26, Issue 5, 2019

Page: [357 - 363] Pages: 7

DOI: 10.2174/0929866526666190212164751

Price: $65

Abstract

Background: The house dust mite Suidasia pontifica (Sp) is an important source of allergens in tropical regions that trigger IgE-mediated allergic reactions such as allergic asthma, atopic dermatitis and allergic rhinitis. Detection of Sp-specific proteins are important in the management and prevention of allergic diseases.

Objective: The study aimed to provide a proof of concept for a gold nanoparticle-labeled sandwich format Lateral Flow Immunoassay (LFIA) kit for the detection of Sp-specific proteins.

Methods: Protein A chromatography-purified rabbit anti-Sp polyclonal antibodies were labeled with gold nanoparticles (AuNP) synthesized from chloroauric acid using the citrate reduction method, then dispensed on a glass fiber pad. Unlabeled antibodies and anti-rabbit IgG were immobilized onto nitrocellulose membrane as test line and control line respectively. Cellulose fiber pad, glass fiber, and the nitrocellulose membrane pad were then assembled as LFIA kit.

Results: Protein-A affinity chromatography purification with pre-concentration yielded 1.45 mg/mL of anti-Sp polyclonal antibodies. Synthesized AuNPs with ~20 nm sizes observed under transmission electron microscope were used for antibody conjugation at an optimal pH of 8.5 (borate buffer) and an optimal ratio of 10 µ L 50µg/mL antibody:100 µ L AuNP. Optimal color intensity and fastest migration time were observed with the treatment of 0.05% Tween20 and 10% sucrose in the conjugate pads; 5% BSA and 0.05% Tween20 in the sample pads, and 1% BSA in the test pads. The limit of detection of the LFIA Sp-specific proteins is 0.076 µg/mL. The sensitivity of the Sp LFIA kit is 83% while the specificity is 100%.

Conclusion: This is the first report of a prototype for a cost-effective, rapid, and equipment-free detection of the house dust mite Suidasia pontifica.

Keywords: Suidasia pontifica, lateral flow immunoassay, allergy, optimization, house dust mites, polyclonal antibody.

Graphical Abstract
[1]
The Global Asthma Report 2014 http://globalasthmareport.org/ burden/burden.php (Accessed Jun 19, 2018).
[2]
Soriano, J.B.; Abajobir, A.A.; Abate, K.H.; Abera, S.F.; Agrawal, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Alam, K. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet Respir. Med., 2017, 5(9), 691-706.
[3]
Abong, J.M.; Kwong, S.L.; Alava, H.D.A.; Castor, M.R. Leon, J.C.de. Prevalence of allergic rhinitis in Filipino adults based on the national nutrition and health survey 2008. Asia Pac. Allergy, 2008, 2(1), 76-85.
[4]
Tupker, R.A.; De Monchy, J.G.R.; Coenraads, P.J.; Homan, A.; Van Der Meer, J.B. Induction of atopic dermatitis by inhalation of house dust mite. J. Allergy Clin. Immunol., 1996, 97(5), 1064-1070.
[5]
Yap, J.M.G.; Ching, M.W.; Cruz, R.S.; Ramos, J.D.A. Specific IgE against the house dust mite suidasia pontifica as a risk factor for asthma and allergies in the tropics. Acta Manilana, 2014, 62, 1-8.
[6]
Mahdy, A.M.; Webster, N.R. Histamine and antihistamines. Anaesth. Intensive Care Med., 2017, 18(4), 210-215.
[7]
Larsen, J.N.; Broge, L.; Jacobi, H. Allergy immunotherapy: The future of allergy treatment. Drug Discov. Today, 2016, 21(1), 26-37.
[8]
Peeling, R.W.; Holmes, K.K.; Mabey, D.; Ronald, A. Rapid tests for Sexually Transmitted Infections (STIs): The way forward. Sex. Transm. Infect., 2006, 82(5), v1-v6.
[9]
Pérez-López, B.; Merkoçi, A. Nanoparticles for the development of improved (bio)sensing Systems. Anal. Bioanal. Chem., 2011, 399(4), 1577-1590.
[10]
Heddle, J. Gold nanoparticle-biological molecule interactions and catalysis. Catalysts, 2013, 3(3), 683-708.
[11]
Larguinho, M.; Baptista, P.V. Gold and silver nanoparticles for clinical diagnostics - from genomics to proteomics. J. Proteomics, 2012, 75(10), 2811-2823.
[12]
Chandra, P.; Singh, J.; Singh, A.; Srivastava, A.; Goyal, R.N.; Shim, Y.B. Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. J. Nanoparticles, 2013, 2013, 1-12.
[13]
Quesada-González, D.; Merkoçi, A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev., 2018, 47(13), 4697-4709.
[14]
Ramos, J.D.A.; Teo, A.S.M.; Ou, K.L.; Tsai, L.C.; Lee, B.W.; Cheong, N.; Chua, K.Y. Comparative allergenicity studies of native and recombinant Blomia tropicalis paramyosin (Blo t 11). Allergy Eur. J. Allergy Clin. Immunol., 2003, 58(5), 412-419.
[15]
Ramos, J.D.A. Immunoglobulin E binding activity of recombinant and native blot 11 allergens. Acta Manila., 2007, 55, 1-8.
[16]
Parolo, C.; de la Escosura-Muñiz, A.; Merkoçi, A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens. Bioelectron., 2013, 40(1), 412-416.
[17]
Salcedo, A.R.M.; Sevilla, F.B. Colorimetric determination of mercury vapor using smartphone camera-based imaging. Instrum. Sci. Technol., 2018, 46(4), 450-462.
[18]
Allergome. http://www.allergome.org/ (Accessed Sep 24, 2018).
[19]
Fernandez-Caldas, E.; Iraola, V.; Carnes, J. Molecular and biochemical properties of storage mites (except blomia species). Protein Pept. Lett., 2007, 14(10), 954-959.
[20]
Heijink, I.H.; Van Oosterhout, A.J.M. Strategies for targeting T-cells in allergic diseases and asthma. Pharmacol. Ther., 2006, 112(2), 489-500.
[21]
Holgate, S.T.; Polosa, R. Treatment strategies for allergy and asthma. Nat. Rev. Immunol., 2008, 8(3), 218-230.
[22]
Shakib, F.; Ghaemmaghami, A.M.; Sewell, H.F. The molecular basis of allergenicity. Trends Immunol., 2008, 29(12), 633-642.
[23]
Tsay, A.; Williams, L.; Mitchell, E.B.; Chapman, M.D. A rapid test for detection of mite allergens in homes. Clin. Exp. Allergy, 2002, 32(11), 1596-1601.
[24]
Lipman, N.S.; Jackson, L.R.; Trudel, L.J.; Weis-Garcia, F. Mono-clonal versus polyclonal antibodies: Distinguishing characteristics, applications, and information resources. ILAR J., 2005, 46(3), 258-268.
[25]
Chun, P. Colloidal gold and other labels for lateral flow immunoassays. In: Lateral Flow Immunoassay; Humana Press: New York, 2009; pp. 1-19.
[26]
Guo, Y.R.; Liu, S.Y.; Gui, W.J.; Zhu, G.N. Gold immuno-chromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal. Biochem., 2009, 389(1), 32-39.
[27]
Chiao, D.J.; Shyu, R.H.; Hu, C.S.; Chiang, H.Y.; Tang, S.S. Colloidal gold-based immunochromatographic assay for detection of botulinum neurotoxin type B. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 809(1), 37-41.
[28]
Wu, W.; Yu, L.; Fang, Z.; Lie, P.; Zeng, L. A lateral flow biosensor for the detection of human pluripotent stem cells. Anal. Biochem., 2013, 436(2), 160-164.
[29]
Miessler, G.L.; Fischer, P.J.; Tarr, D.A.; Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; Mccabe, P.; Pidcock, E.; Rodriguez-Monge, L. Inorg. Chem., 2008, 41
[30]
Mansfield, M.A. Nitrocellulose Membranes for Lateral Flow Immunoassays: A Technical Treatise.Lateral Flow Immunoassay; Humana Press: Totowa, NJ, 2009, pp. 1-19.
[31]
Galmarini, M.V.; Baeza, R.; Sanchez, V.; Zamora, M.C.; Chirife, J. Comparison of the viscosity of trehalose and sucrose solutions at various temperatures: Effect of guar gum addition. LWT - Food Sci. Technol., 2011, 44(1), 186-190.
[32]
Bogdanovic, J.; Koets, M.; Sander, I.; Wouters, I.; Meijster, T.; Heederik, D.; van Amerongen, A.; Doekes, G. Rapid detection of fungal α-amylase in the work environment with a lateral flow immunoassay. J. Allergy Clin. Immunol., 2006, 118(5), 1157-1163.
[33]
Koets, M.; Sander, I.; Bogdanovic, J.; Doekes, G.; Amerongen, A. Van A rapid lateral flow immunoassay for the detection of fungal alpha-amylase at the workplace. J. Environ. Monit., 2006, 8(9), 942-946.
[34]
Koets, M.; Renström, A.; Zahradnik, E.; Bogdanovic, J.; Wouters, I.M.; Van Amerongen, A. Rapid one-step assays for on-site monitoring of mouse and rat urinary allergens. J. Environ. Monit., 2011, 13(12), 3475-3480.
[35]
Koizumi, D.; Shirota, K.; Akita, R.; Oda, H.; Akiyama, H. Development and validation of a lateral flow assay for the detection of crustacean protein in processed foods. Food Chem., 2014, 150, 348-352.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy