Generic placeholder image

Drug Metabolism Letters

Editor-in-Chief

ISSN (Print): 1872-3128
ISSN (Online): 1874-0758

Research Article

Imatinib Uptake into Cells is Not Mediated by Organic Cation Transporters OCT1, OCT2, or OCT3, But is Influenced by Extracellular pH

Author(s): Jaurès Blanc Mettral, Nicolas Faller, Sandra Cruchon, Loïc Sottas, Thierry Buclin, Laurent Schild, Eva Choong, Aimable Nahimana and Laurent A. Decosterd*

Volume 13, Issue 2, 2019

Page: [102 - 110] Pages: 9

DOI: 10.2174/1872312813666190207150207

Abstract

Background: Cancer cells undergo genetic and environmental changes that can alter cellular disposition of drugs, notably by alterations of transmembrane drug transporters expression. Whether the influx organic cation transporter 1 (OCT1) encoded by the gene SLC221A1 is implicated in the cellular uptake of imatinib is still controversial. Besides, imatinib ionization state may be modulated by the hypoxic acidic surrounding extracellular microenvironment.

Objective: To determine the functional contribution of OCTs and extracellular pH on imatinib cellular disposition.

Methods: We measured imatinib uptake in two different models of selective OCTs drug transporter expression (transfected Xenopus laevis oocytes and OCT-expressing HEK293 human cells), incubated at pH 7.4 and 6, using specific mass spectrometry analysis.

Results: Imatinib cellular uptake occurred independently of OCT1- OCT2- or OCT3-mediated drug transport at pH 7.4. Uptake of the OCTs substrate tetraethylammonium in oocytes remained intact at pH 6, while the accumulation of imatinib in oocytes was 10-fold lower than at pH 7.4, irrespectively of OCTs expressions. In OCT1- and OCT2-HEK cells at pH 6, imatinib accumulation was reduced by 2- 3-fold regardless of OCTs expressions. Since 99.5% of imatinib at pH6 is under the cationic form, the reduced cellular accumulation of imatinib at such pH may be explained by the lower amount of uncharged imatinib remaining for passive diffusion across cellular membrane.

Conclusion: Imatinib is not a substrate of OCTs 1-3 while the environmental pH modulates cellular disposition of imatinib. The observation that a slightly acidic extracellular pH influences imatinib cellular accumulation is important, considering the low extracellular pH reported in the hematopoietic leukemia/ cancer cell microenvironment.

Keywords: Imatinib, influx organic cation transporters, OCT1, OCT2, OCT3, acidic extracellular pH, multidrug and toxin extrusion protein 1, MATE1, chronic myeloid leukemia, cellular concentrations, mass spectrometry.

Next »
Graphical Abstract
[1]
Widmer, N.; Decosterd, L.A.; Csajka, C.; Leyvraz, S.; Duchosal, M.A.; Rosselet, A.; Rochat, B.; Eap, C.B.; Henry, H.; Biollaz, J.; Buclin, T. Population pharmacokinetics of imatinib and the role of alpha-acid glycoprotein. Br. J. Clin. Pharmacol., 2006, 62(1), 97-112.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02719.x] [PMID: 16842382 ]
[2]
Nies, A.T.; Schaeffeler, E.; van der Kuip, H.; Cascorbi, I.; Bruhn, O.; Kneba, M.; Pott, C.; Hofmann, U.; Volk, C.; Hu, S.; Baker, S.D.; Sparreboom, A.; Ruth, P.; Koepsell, H.; Schwab, M. Cellular uptake of imatinib into leukemic cells is independent of human organic cation transporter 1 (OCT1). Clin. Cancer Res., 2014, 20(4), 985-994.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1999] [PMID: 24352644]
[3]
Widmer, N.; Decosterd, L.A.; Leyvraz, S.; Duchosal, M.A.; Rosselet, A.; Debiec-Rychter, M.; Csajka, C.; Biollaz, J.; Buclin, T. Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability. Br. J. Cancer, 2008, 98(10), 1633-1640.
[http://dx.doi.org/10.1038/sj.bjc.6604355] [PMID: 18475296]
[4]
Widmer, N.; Decosterd, L.A.; Csajka, C.; Montemurro, M.; Haouala, A.; Leyvraz, S.; Buclin, T. Imatinib plasma levels: correlation with clinical benefit in GIST patients. Br. J. Cancer, 2010, 102(7), 1198-1199.
[http://dx.doi.org/10.1038/sj.bjc.6605584] [PMID: 20179709]
[5]
Widmer, N.; Colombo, S.; Buclin, T.; Decosterd, L.A. Functional consequence of MDR1 expression on imatinib intracellular concentrations. Blood, 2003, 102(3), 1142.
[http://dx.doi.org/10.1182/blood-2003-03-0993] [PMID: 12869489]
[6]
Hu, S.; Franke, R.M.; Filipski, K.K.; Hu, C.; Orwick, S.J.; de Bruijn, E.A.; Burger, H.; Baker, S.D.; Sparreboom, A. Interaction of imatinib with human organic ion carriers. Clin. Cancer Res., 2008, 14(10), 3141-3148.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4913] [PMID: 18483382]
[7]
Schmidt-Lauber, C.; Harrach, S.; Pap, T.; Fischer, M.; Victor, M.; Heitzmann, M.; Hansen, U.; Fobker, M.; Brand, S.M.; Sindic, A.; Pavenstädt, H.; Edemir, B.; Schlatter, E.; Bertrand, J.; Ciarimboli, G. Transport mechanisms and their pathology-induced regulation govern tyrosine kinase inhibitor delivery in rheumatoid arthritis. PLoS One, 2012, 7(12)e52247
[http://dx.doi.org/10.1371/journal.pone.0052247] [PMID: 23284953]
[8]
Harrach, S.; Schmidt-Lauber, C.; Pap, T.; Pavenstädt, H.; Schlatter, E.; Schmidt, E.; Berdel, W.E.; Schulze, U.; Edemir, B.; Jeromin, S.; Haferlach, T.; Ciarimboli, G.; Bertrand, J. MATE1 regulates cellular uptake and sensitivity to imatinib in CML patients. Blood Cancer J., 2016, 6e470 .
[http://dx.doi.org/10.1038/bcj.2016.79] [PMID: 27635733]
[9]
Watkins, D.B.; Hughes, T.P.; White, D.L. OCT1 and imatinib transport in CML: is it clinically relevant? Leukemia, 2015, 29(10), 1960-1969.
[http://dx.doi.org/10.1038/leu.2015.170] [PMID: 26122430]
[10]
Thomas, J.; Wang, L.; Clark, R.E.; Pirmohamed, M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood, 2004, 104(12), 3739-3745.
[http://dx.doi.org/10.1182/blood-2003-12-4276] [PMID: 15315971]
[11]
White, D.L.; Saunders, V.A.; Dang, P.; Engler, J.; Zannettino, A.C.; Cambareri, A.C.; Quinn, S.R.; Manley, P.W.; Hughes, T.P. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood, 2006, 108(2), 697-704.
[http://dx.doi.org/10.1182/blood-2005-11-4687] [PMID: 16597591]
[12]
Burger, H.; Mathijssen, R.H.; Sparreboom, A.; Wiemer, E.A. Can “specific” OCT1 inhibitors be used to determine OCT1 transporter activity toward imatinib? Blood, 2013, 121(24), 4965-4966.
[http://dx.doi.org/10.1182/blood-2013-03-493841] [PMID: 23766461]
[13]
White, D.L.; Saunders, V.A.; Dang, P.; Engler, J.; Venables, A.; Zrim, S.; Zannettino, A.; Lynch, K.; Manley, P.W.; Hughes, T. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood, 2007, 110(12), 4064-4072.
[http://dx.doi.org/10.1182/blood-2007-06-093617] [PMID: 17761829]
[14]
White, D.L.; Radich, J.; Soverini, S.; Saunders, V.A.; Frede, A.K.; Dang, P.; Cilloni, D.; Lin, P.; Mongay, L.; Woodman, R.; Manley, P.; Slader, C.; Kim, D.W.; Pane, F.; Martinelli, G.; Saglio, G.; Hughes, T.P. Chronic phase chronic myeloid leukemia patients with low OCT-1 activity randomized to high-dose imatinib achieve better responses and have lower failure rates than those randomized to standard-dose imatinib. Haematologica, 2012, 97(6), 907-914.
[http://dx.doi.org/10.3324/haematol.2011.056457] [PMID: 22207690]
[15]
White, D.L.; Saunders, V.A.; Dang, P.; Engler, J.; Hughes, T.P. OCT-1 activity measurement provides a superior imatinib response predictor than screening for single-nucleotide polymorphisms of OCT-1. Leukemia, 2010, 24(11), 1962-1965.
[http://dx.doi.org/10.1038/leu.2010.188] [PMID: 20811406]
[16]
White, D.L.; Dang, P.; Engler, J.; Frede, A.; Zrim, S.; Osborn, M.; Saunders, V.A.; Manley, P.W.; Hughes, T.P. Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J. Clin. Oncol., 2010, 28(16), 2761-2767.
[http://dx.doi.org/10.1200/JCO.2009.26.5819] [PMID: 20421539]
[17]
Grinfeld, J.; Gerrard, G.; Alikian, M.; Alonso-Dominguez, J.; Ale, S.; Valgañon, M.; Nteliopoulos, G.; White, D.; Marin, D.; Hedgley, C.; O’Brien, S.; Clark, R.; Goldman, J.M.; Milojkovic, D.; Apperley, J.F.; Foroni, L. A common novel splice variant of SLC22A1 (OCT1) is associated with impaired responses to imatinib in patients with chronic myeloid leukaemia. Br. J. Haematol., 2013, 163(5), 631-639.
[http://dx.doi.org/10.1111/bjh.12591] [PMID: 24117365]
[18]
White, D.L.; Hughes, T.P. Classification of patients with chronic myeloid leukemia on basis of BCR-ABL transcript level at 3 months fails to identify patients with low organic cation transporter-1 activity destined to have poor imatinib response. J. Clin. Oncol., 2012, 30(10), 1144-1145.
[http://dx.doi.org/10.1200/JCO.2011.41.1090] [PMID: 22393079]
[19]
Engler, J.R.; Frede, A.; Saunders, V.; Zannettino, A.; White, D.L.; Hughes, T.P. The poor response to imatinib observed in CML patients with low OCT-1 activity is not attributable to lower uptake of imatinib into their CD34+ cells. Blood, 2010, 116(15), 2776-2778.
[http://dx.doi.org/10.1182/blood-2010-01-267013] [PMID: 20634379]
[20]
Makhtar, S.M.; Husin, A.; Baba, A.A.; Ankathil, R. Genetic variations in influx transporter gene SLC22A1 are associated with clinical responses to imatinib mesylate among Malaysian chronic myeloid leukaemia patients. J. Genet., 2018, 97(4), 835-842.
[http://dx.doi.org/10.1007/s12041-018-0978-9] [PMID: 30262695]
[21]
Chhikara, S.; Sazawal, S.; Singh, K.; Chaubey, R.; Pati, H.; Tyagi, S.; Mahapatra, M.; Saxena, R. Comparative analysis of the Sokal, Euro and European Treatment and Outcome Study score in prognostication of Indian chronic myeloid leukemia-chronic phase patients on imatinib. South Asian J. Cancer, 2018, 7(4), 258-262.
[http://dx.doi.org/10.4103/sajc.sajc_244_17] [PMID: 30430096]
[22]
Jaruskova, M.; Curik, N.; Hercog, R.; Polivkova, V.; Motlova, E.; Benes, V.; Klamova, H.; Pecherkova, P.; Belohlavkova, P.; Vrbacky, F.; Machova Polakova, K. Genotypes of SLC22A4 and SLC22A5 regulatory loci are predictive of the response of chronic myeloid leukemia patients to imatinib treatment. J. Exp. Clin. Cancer Res., 2017, 36(1), 55.
[http://dx.doi.org/10.1186/s13046-017-0523-3] [PMID: 28420426]
[23]
Ben Hassine, I.; Gharbi, H.; Soltani, I.; Teber, M.; Farrah, A.; Ben Hadj Othman, H.; Amouri, H.; Bellaaj, H.; Lakhal, R.B.; Romdhane, N.B.; Abbes, S.; Menif, S. hOCT1 gene expression predict for optimal response to Imatinib in Tunisian patients with chronic myeloid leukemia. Cancer Chemother. Pharmacol., 2017, 79(4), 737-745.
[http://dx.doi.org/10.1007/s00280-017-3266-0] [PMID: 28286932]
[24]
Yin, C.X.; Chen, W.W.; Zhong, Q.X.; Jiang, X.J.; Wang, Z.X.; Li, X.D.; Ye, J.Y.; Cao, R.; Liao, L.B.; Wu, F.Q.; Xu, D.; Zhong, J.S.; Meng, F.Y. Association between the concentration of imatinib in bone marrow mononuclear cells, mutation status of ABCB1 and therapeutic response in patients with chronic myelogenous leukemia. Exp. Ther. Med., 2016, 11(5), 2061-2065.
[http://dx.doi.org/10.3892/etm.2016.3127] [PMID: 27168851]
[25]
Vaidya, S.; Ghosh, K.; Shanmukhaiah, C.; Vundinti, B.R. Genetic variations of hOCT1 gene and CYP3A4/A5 genes and their association with imatinib response in Chronic Myeloid Leukemia. Eur. J. Pharmacol., 2015, 765, 124-130.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.034] [PMID: 26300393]
[26]
Cao, C.; Li, X.; Liu, T.; Zhang, L.; Shen, K.; Zhu, H. Human organic cation transporter 1 protein levels of granulocytes can optimize imatinib therapy in patients with chronic myeloid leukemia. Acta Haematol., 2015, 133(2), 199-204.
[http://dx.doi.org/10.1159/000365437] [PMID: 25358338]
[27]
Malhotra, H.; Sharma, P.; Malhotra, B.; Bhargava, S.; Jasuja, S.; Kumar, M. Molecular response to imatinib & its correlation with mRNA expression levels of imatinib influx & efflux transporters in patients with chronic myeloid leukaemia in chronic phase. Indian J. Med. Res., 2015, 142(2), 175-182.
[http://dx.doi.org/10.4103/0971-5916.164250] [PMID: 26354214 ]
[28]
Francis, J.; Dubashi, B.; Sundaram, R.; Pradhan, S.C.; Chandrasekaran, A. Influence of Sokal, Hasford, EUTOS scores and pharmacogenetic factors on the complete cytogenetic response at 1 year in chronic myeloid leukemia patients treated with imatinib. Med. Oncol., 2015, 32(8), 213.
[http://dx.doi.org/10.1007/s12032-015-0665-0] [PMID: 26143137]
[29]
Burger, H.; den Dekker, A.T.; Segeletz, S.; Boersma, A.W.; de Bruijn, P.; Debiec-Rychter, M.; Taguchi, T.; Sleijfer, S.; Sparreboom, A.; Mathijssen, R.H.; Wiemer, E.A. Lysosomal Sequestration Determines Intracellular Imatinib Levels. Mol. Pharmacol., 2015, 88(3), 477-487.
[http://dx.doi.org/10.1124/mol.114.097451] [PMID: 26108972 ]
[30]
Gerweck, L.E.; Vijayappa, S.; Kozin, S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol. Cancer Ther., 2006, 5(5), 1275-1279.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0024] [PMID: 16731760]
[31]
Rovida, E.; Peppicelli, S.; Bono, S.; Bianchini, F.; Tusa, I.; Cheloni, G.; Marzi, I.; Cipolleschi, M.G.; Calorini, L.; Sbarba, P.D. The metabolically-modulated stem cell niche: a dynamic scenario regulating cancer cell phenotype and resistance to therapy. Cell Cycle, 2014, 13(20), 3169-3175.
[http://dx.doi.org/10.4161/15384101.2014.964107] [PMID: 25485495]
[32]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[33]
Haouala, A.; Zanolari, B.; Rochat, B.; Montemurro, M.; Zaman, K.; Duchosal, M.A.; Ris, H.B.; Leyvraz, S.; Widmer, N.; Decosterd, L.A. Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(22), 1982-1996.
[http://dx.doi.org/10.1016/j.jchromb.2009.04.045] [PMID: 19505856]
[34]
Crossman, L.C.; Druker, B.J.; Deininger, M.W.; Pirmohamed, M.; Wang, L.; Clark, R.E. hOCT 1 and resistance to imatinib. Blood, 2005, 106(3), 1133-1134.
[http://dx.doi.org/10.1182/blood-2005-02-0694] [PMID: 16033955]
[35]
Fujita, T.; Urban, T.J.; Leabman, M.K.; Fujita, K.; Giacomini, K.M. Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J. Pharm. Sci., 2006, 95(1), 25-36.
[http://dx.doi.org/10.1002/jps.20536] [PMID: 16307453]
[36]
Minematsu, T.; Giacomini, K.M. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol. Cancer Ther., 2011, 10(3), 531-539.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0731] [PMID: 21252289]
[37]
Rovida, E.; Marzi, I.; Cipolleschi, M.G.; Dello Sbarba, P. One more stem cell niche: how the sensitivity of chronic myeloid leukemia cells to imatinib mesylate is modulated within a “hypoxic” environment. Hypoxia (Auckl.), 2014, 2, 1-10.
[PMID: 27774462]

© 2024 Bentham Science Publishers | Privacy Policy