Polyethylene Glycol Acts as a Mechanistic Stabilizer of L-asparaginase: A Computational Probing

Author(s): Rajashekar Sindhu , Hanumanthappa Pradeep , Haravey K. Manonmani* .

Journal Name: Medicinal Chemistry

Volume 15 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: L-asparaginase (L-ASN) is an anti-cancer enzyme therapeutic drug that exerts cytotoxicity via inhibition of protein synthesis through depletion of L-asparagine in the tumor microenvironment. The therapeutic performance of the native drug is partial due to the associated instability, reduced half-life and immunogenic complications.

Objective: In this study, we attempted the modification of recombinant L-asparaginase with PEG and an integrated computational strategy to probe the PEGylation in the protein to understand the biological stability/activity imparted by PEG.

Methods: In vitro PEGylation of recombinant L-ASN was carried out and further evaluated in silico.

Results: PEGylation enhanced thermal and pH activities with extended serum half-life and resistance to proteases compared to the native enzyme. The molecular dynamics analysis revealed intricate interactions required in the coupling of PEG to L-asparaginase to bestow stronger binding affinity of L-asparagine moiety towards L-asparaginase. PEG-asparagine complex ensured stable conformation over both the native protein and asparagine-protein complex thus elucidating the PEG-induced stable conformation in the protein. PEG mechanistically stabilized L-asparaginase through inducing pocket modification at the receptor to adapt to the cavity.

Conclusion: The study provides the rationale of PEGylation in imparting the stability towards Lasparaginase which would expand the potential application of L-asparaginase enzyme for the effective treatment of cancer.

Keywords: L-asparaginase, Polyethylene glycation, therapeutic drug, biological stability, cytotoxicity, computation.

[1]
Panetta, J.C.; Gajjar, A.; Hijiya, N.; Hak, L.J.; Cheng, C.; Liu, W.; Pui, C.H.; Relling, M.V. Comparison of native E. coli and PEG asparaginase. Pharmacokinetics and pharmacodynamics in pediatric Acute Lymphoblastic Leukemia. Clin. Pharmacol. Ther., 2009, 86(6), 651-658.
[2]
Ueno, T.; Ohtawa, K.; Mitsui, K.; Kodera, Y.; Hiroto, M.; Matsushima, A.; Inada, Y.; Nishimura, H. Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia, 1997, 11(11), 1858-1861.
[3]
Rodríguez-Martínez, J.A.; Rivera-Rivera, I.; Solá, R.J.; Griebenow, K. Enzymatic activity and thermal stability of PEG-α-chymotrypsin conjugates. Biotechnol. Lett., 2009, 31(6), 883-887.
[4]
Hijiya, N.; van der Sluis, I.M. Asparaginase-associated toxicity in children with acute lymphoblastic leukemia. Leuk. Lymphoma, 2016, 57(4), 748-757.
[5]
Harris, J.M.; Martin, N.E.; Modi, M. Pegylation. Clin. Pharmacokinet., 2001, 40(7), 539-551.
[6]
Fishburn, C.S. The pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics. J. Pharm. Sci., 2008, 97(10), 4167-4183.
[7]
Kotzia, G.A.; Lappa, K.; Labrou, N.E. Tailoring structure-function properties of L-asparaginase: Engineering resistance to trypsin cleavage. Biochem. J., 2007, 404(2), 337-343.
[8]
Muller, H-J.; Loning, L.; Horn, A.; Schwabe, D.; Gunkel, M.; Schrappe, M.; von Schutz, V.; Henze, G.; Casimiro da Palma, J.; Ritter, J. Pegylated asparaginase (OncasparTM) in children with ALL: Drug monitoring in reinduction according to the ALL/NHL-BFM 95 Protocols. Br. J. Haematol., 2000, 110(2), 379-384.
[9]
Webster, R.; Didier, E.; Harris, P.; Siegel, N.; Stadler, J.; Tilbury, L.; Smith, D. PEGylated proteins: Evaluation of their safety in the absence of definitive metabolism studies. Drug Metab. Dispos., 2006, 35(1), 9-16.
[10]
Sindhu, R.; Manonmani, H.K. Expression and characterization of recombinant L-asparaginase from Pseudomonas fluorescens. Protein Expr. Purif., 2018, 143, 83-91.
[11]
Vidya, J.; Vasudevan, U.M.; Soccol, C.R.; Pandey, A. Cloning, functional expression and characterization of L-asparaginase II from E. coli MTCC 739. Food Technol. Biotechnol., 2011, 49(3), 286-290.
[12]
Bradford, M.M. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[13]
Soares, A.L.; Guimarães, G.M.; Polakiewicz, B.; de Moraes Pitombo, R.N.; Abrahão-Neto, J. Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli L-asparaginase. Int. J. Pharm., 2002, 237(1-2), 163-170.
[14]
Habeeb, A.F.S.A. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem., 1966, 14(3), 328-336.
[15]
Monfardini, C.; Schiavon, O.; Caliceti, P.; Morpurgo, M.; Harris, J.M.; Veronese, F.M. A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjug. Chem., 1995, 6(1), 62-69.
[16]
Davis, I.W.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. OLPROBITY: Structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res., 2004, 32(Web Server), W615-W619.
[17]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr., 1993, 26(2), 283-291.
[18]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDock-Tools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[19]
Peng, R.H.; Qiu, J.; Tian, Y.S.; Gao, J.; Han, H.; Fu, X.Y.; Zhu, B.; Xu, J.; Wang, B.; Li, Z.; Wang, L.; Yao, Q.H. Disulfide isomerase-like protein AtPDIL1-2 is a good candidate for trichlorophenol phytodetoxification. Sci. Rep., 2017, 7, 40130.
[http://dx.doi.org/10.1038/srep40130]
[20]
Pradeep, H.; Rajanikant, G.K. Computational prediction of a putative binding site on Drp1: Implications for Antiparkinsonian therapy. J. Chem. Inf. Model., 2014, 54(7), 2042-2050.
[http://dx.doi.org/10.1021/ci500243h]
[21]
Hess, B.; Kutzner, C.; Spoel, D.van der; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q]
[22]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr.Sect D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[23]
Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676.
[24]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[25]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[26]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38. 27-28
[27]
Bailon, P.; Berthold, W. Polyethylene glycol-conjugated pharma-ceutical proteins. Pharm. Sci. Technol. Today, 1998, 1(8), 352-356.
[28]
Hinds, K.D.; Kim, S.W. Effects of PEG conjugation on insulin properties. Adv. Drug Deliv. Rev., 2002, 54(4), 505-530.
[29]
Granold, M.; Hajieva, P.; Toşa, M.I.; Irimie, F-D.; Moosmann, B. Modern diversification of the amino acid repertoire driven by oxygen. Proc. Natl. Acad. Sci. USA, 2018, 115(1), 41-46.
[30]
Mobley, D.L.; Dill, K.A. Binding of small-molecule ligands to proteins: What you see is not always what you get. Structure, 2009, 17(4), 489-498.
[31]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[32]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[33]
Maguid, S.; Fernandez-Alberti, S.; Ferrelli, L.; Echave, J. Exploring the common dynamics of homologous proteins. Application to the globin family. Biophys. J., 2005, 89(1), 3-13.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 6
Year: 2019
Page: [705 - 714]
Pages: 10
DOI: 10.2174/1573406415666190206232816
Price: $58

Article Metrics

PDF: 21
HTML: 1