Design, Synthesis and Antiplasmodial Evaluation of Sulfoximine-triazole Hybrids as Potential Antimalarial Prototypes

Author(s): Tommy F. Mabasa , Babatunde Awe , Dustin Laming , Henok H. Kinfe* .

Journal Name: Medicinal Chemistry

Volume 15 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Malaria, caused by the deadly Plasmodium falciparum strain, claims the lives of millions of people annually. The emergence of drug-resistant strains of P. falciparum to the artemisinin-based combination therapy (ACT), the last line of defense against malaria, is worrisome and urges for the development of new chemo-types with a new mode of action. In the search of new antimalarial agents, hybrids of triazoles and other known antimalarial drugs have been reported to possess better activity than either of the parent compounds administered individually. Despite their better activity, no hybrid antimalarial drugs have been developed so far.

Objective: In the hope of developing new antimalarial prototypes, we propose the design, synthesis and antimalarial evaluation of novel sulfoximine-triazole hybrids owing to their interesting biological and physiological properties.

Methods: The sulfoximine part of the hybrid will be synthesized via imidation of the corresponding sulfoxide. Propargylation of the NH moiety of the sulfoximine followed by copper-catalyzed click chemistry with benzyl azide was envisaged to provide the target sulfoximine-triazole hybrids.

Results: Five novel sulfoximine-triazole hybrids possessing various substituents on the sulfoximine moiety have been successfully synthesized and evaluated for their antiplasmodial and cytotoxicity activities. The results revealed that the co-presence of the sulfoximine and triazole moieties along with a lipophilic alkyl substituent on the sulfur atom impart significant activity.

Conclusion: Sulfoximine-triazole hybrids could be used as a prototype for the synthesis of new derivatives with better antiplasmodial activities.

Keywords: Sulfoximine, triazole, hybrids, antimalarial, antiplasmodial, sulfoximine-triazole hybrids.

[1]
Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res., 2008, 41, 69-77.
[2]
Majori, G. Combined antimalarial therapy using Artemisinin. Parassitologia, 2004, 46, 85-87.
[3]
Walsh, J.J.; Bell, A. Hybrid drugs for malaria. Curr. Pharm. Des., 2009, 15, 2970-2985.
[4]
Agarwal, D.; Gupta, R.D.; Awasthi, S.K. Are antimalarial hybrid molecules a close reality or a distant dream? Antimicrob. Agents Chemother., 2017, 61, 1-29.
[5]
WHO. Guidelines for the Treatment of Malaria; World Health Organization, 2015.
[6]
Walsh, J.J.; Coughlan, D.; Heneghan, N.; Gaynor, C.; Bell, A. A novel Artemisinin-quinine hybrid with potent antimalarial activity. Bioorg. Med. Chem. Lett., 2007, 17, 3599-3602.
[7]
Varotti, F.D.P.; Botelho, A.C.C.; Andrade, A.A.; De Paula, R.C.; Fagundes, E.M.S.; Valverde, A.; Mayer, L.M.U.; Mendonça, J.S.; De Souza, M.V.N.; Boechat, N.; Krettli, A.U. Synthesis, antimalarial activity, and intracellular targets of MEFAS, a new hybrid compound derived from Mefloquine and Artesunate. Antimicrob. Agents Chemother., 2008, 52, 3868-3874.
[8]
WHO. World Malaria Report; World Health Organisation, 2017.
[9]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 70, 30-54.
[10]
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis of 4-amino-quinoline-1,2,3-triazole and 4-aminoquinoline-1,2,3-triazole-1,3,5-triazine hybrids as potential antimalarial agents. Chem. Biol. Drug Des., 2011, 78, 124-136.
[11]
Pereira, G.R.; Brandão, G.C.; Arantes, L.M.; de Oliveira, H.A.; de Paula, R.C.; do Nascimento, M.F.A.; dos Santos, F.M.; da Rocha, R.K.; Lopes, J.C.D.; de Oliveira, A.B. 7-chloroquinolinotriazoles: Synthesis by the azide–alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies. Eur. J. Med. Chem., 2014, 73, 295-309.
[12]
Hamann, A.R.; De Kock, C.; Smith, P.J.; Van Otterlo, W.A.L.; Blackie, M.A.L. Synthesis of triazole-linked 2-trichloromethyl-quinazolines and exploration of their efficacy against P. Falciparum. S. Afr. J. Chem., 2013, 66, 231-236.
[13]
Hamann, A.R.; De Kock, C.; Smith, P.J.; Van Otterlo, W.A.L.; Blackie, M.A.L. Synthesis of novel triazole-linked Mefloquine derivatives: Biological evaluation against Plasmodium Falciparum. Bioorg. Chem., 2014, 24, 5466-5469.
[14]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition En Route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[15]
Gonzaga, D.; Senger, M.R.; Da Silva, F.D.C.; Ferreira, V.F.; Silva, F.P. 1-Phenyl-1H- and 2-Phenyl-2H-1,2,3-triazol derivatives: Design, synthesis and inhibitory effect on alpha-glycosidases. Eur. J. Med. Chem., 2014, 74, 461-476.
[16]
Siemeister, G.; Lucking, U.; Wengner, A.M.; Lienau, P.; Steinke, W.; Schatz, C.; Mumberg, D.; Ziegelbauer, K. BAY 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol. Cancer Ther., 2012, 1, 2265-2273.
[17]
Lücking, U. Sulfoximines: A neglected opportunity in medicinal chemistry. Angew. Chemie. Int. Ed., 2013, 52, 2-12.
[18]
Vendetti, F.P.; Lau, A.; Schamus, S.; Conrads, T.P.; O’Connor, M.J.; Bakkenist, C.J. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of Cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget, 2015, 6, 44289-44305.
[19]
Sirvent, J.A.; Lucking, U. Novel pieces for the emerging picture of sulfoximines in drug discovery: Synthesis and evaluation of Sulfoximine analogues of marketed drugs and advanced clinical candidates. Chem. Eur. J., 2017, 12, 487-501.
[20]
Frings, M.; Bolm, C.; Blum, A.; Gnamm, C. Sulfoximines from a medicinal chemist’s perspective: Physicochemical and in Vitro parameters relevant for drug discovery. Eur. J. Med. Chem., 2017, 126, 225-245.
[21]
Kinfe, H.H.; Moshapo, P.T.; Makolo, F.L.; Gammon, D.W.; Ehlers, M.; Schmuck, C. Preparation and antimalarial activity of a novel class of carbohydrate-derived, fused thiochromans. Eur. J. Med. Chem., 2014, 87, 197-202.
[22]
Madumo, G.K.; Moshapo, P.T.; Kinfe, H.H. Effects of lipophilicity, protecting group and stereochemistry on the antimalarial activity of carbohydrate-derived thiochromans. Med. Chem. Res., 2018, 27, 817-833.
[23]
Kinfe, H.H.; Belay, Y.H. Synthesis and biological evaluation of novel thiosemicarbazone-triazole hybrid compounds antimalarial agents. S. Afr. J. Chem., 2013, 66, 130-135.
[24]
Armarego, W.L. Purification of laboratory chemicals; Butterworth-Heinemann: Oxford, United Kingdom, 2017.
[25]
Rossi, R.A.; Palacios, S.M. Photostimulated reactions of alkanethiolate ions with Haloarenes. Electron transfer vs. fragmentation of the radical anion intermediate. J. Org. Chem., 1981, 46, 5300-5304.
[26]
Bates, C.G.; Gujadhur, R.K.; Venkataraman, D. A General method for the formation of aryl-sulfur bonds using copper(I) catalysts. Org. Lett., 2002, 4, 2803-2806.
[27]
Gul, K.; Narayanaperumal, S.; Dornelles, L.; Rodrigues, O.E.D.; Braga, A.L. Bimetallic system for the synthesis of diorganyl selenides and sulfides, chiral β-seleno amines, and seleno- and thioesters. Tetrahedron Lett., 2011, 52, 3592-3596.
[28]
Russell, G.A.; Ngoviwatchai, P.; Tashtoush, H.I.; Pla-Dalmau, A.; Khanna, R.K. Reactions of alkylmercurials with heteroatom-centered acceptor radicals. J. Am. Chem. Soc., 1988, 110, 3530-3538.
[29]
Rajabi, F.; Naserian, S.; Primo, A.; Luque, R. Efficient and highly selective aqueous oxidation of sulfides to sulfoxides at room temperature catalysed by supported iron oxide nanoparticles on SBA-15. Adv. Synth. Catal., 2011, 353, 2060-2066.
[30]
Iriuchijima, S.; Sakakibara, T.; Tsuchihashi, G.I. A method for the synthesis of aldehydes. Agric. Biol. Chem., 1976, 40, 1369-1372.
[31]
Gupta, S.; Chaudhary, P.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. Copper promoted: N -alkylation of sulfoximines with alkylboronic acid under mild conditions. Org. Biomol. Chem., 2017, 15, 8493-8498.
[32]
Johnson, C.R.; Kirehhoff, R.A. Synthesis of alkenes by reductive elimination of β-hydroxysulfoximines. J. Am. Chem. Soc., 1979, 101, 3602-3607.
[33]
Hendriks, C.M.M.; Bohmann, R.A.; Bohlem, M.; Bolm, C. N-alkylations of NH-sulfoximines and NH-sulfondiimines with alkyl halides mediated by potassium hydroxide in dimethyl sulfoxide. Adv. Synth. Catal., 2014, 356, 1847-1852.
[34]
Makler, M.T.; Ries, J.M.; Williams, J.A.; Bancroft, J.E.; Piper, R.C.; Gibbins, B.L.; Hinrichs, D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg., 1993, 48, 739-741.
[35]
Ekwall, B.; Silano, V.; Paganuzzi-Stammati, A. Toxicity Tests with Mammalian Cell Cultures; Bourdeau, P.; Sommers, E.; Mark Richardson, G; Hickman, J.R., Ed.; John Wiley & Sons Ltd: California, 1990, Vol. 8, pp. 75-91.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 6
Year: 2019
Page: [685 - 692]
Pages: 8
DOI: 10.2174/1573406415666190206232308
Price: $58

Article Metrics

PDF: 28
HTML: 1