Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Interactome Analysis of the Differentially Expressed Proteins in Uterine Leiomyoma

Author(s): Tahreem Sahar, Aruna Nigam, Shadab Anjum, Farheen Waziri, Shipie Biswas, Swatantra K. Jain and Saima Wajid*

Volume 19, Issue 10, 2019

Page: [1293 - 1312] Pages: 20

DOI: 10.2174/1871520619666190206143523

Price: $65

Abstract

Background: Recent advances in proteomics present enormous opportunities to discover proteome related disparities and thus understanding the molecular mechanisms related to a disease. Uterine leiomyoma is a benign monoclonal tumor, located in the pelvic region, and affecting 40% of reproductive aged female.

Objective: Identification and characterization of the differentially expressed proteins associated with leiomyogenesis by comparing uterine leiomyoma and normal myometrium.

Methods: Paired samples of uterine leiomyoma and adjacent myometrium retrieved from twenty-five females suffering from uterine leiomyoma (n=50) were submitted to two-dimensional electrophoresis (2-DE), matrixassisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and to reverse transcription polymerase chain reaction (RT-PCR).

Results: Comparison of protein patterns revealed seven proteins with concordantly increased spot intensities in leiomyoma samples. E3 ubiquitin-protein ligase MIB2 (MIB2), Mediator of RNA polymerase II transcription subunit 10 (MED10), HIRA-interacting protein (HIRP3) and Fatty acid binding protein brain (FABP7) were found to be upregulated. While, Biogenesis of lysosome-related organelles complex 1 subunit 2 (BL1S2), Shadow of prion protein (SPRN) and RNA binding motif protein X linked like 2 (RMXL2) were found to be exclusively present in leiomyoma sample. The expression modulations of the corresponding genes were further validated which corroborated with the 2-DE result showing significant upregulation in leiomyoma. We have generated a master network showing the interactions of the experimentally identified proteins with their close neighbors and further scrutinized the network to prioritize the routes leading to cell proliferation and tumorigenesis.

Conclusion: This study highlights the importance of identified proteins as potential targets for therapeutic purpose. This work provides an insight into the mechanism underlying the overexpression of the proteins but warrants further investigations.

Keywords: Monoclonal tumor, leiomyoma, myometrium, proteomics, 2-DE, MALDI-TOF MS, real-time PCR.

« Previous
Graphical Abstract
[1]
Unver, N.U.; Acikalin, M.F.; Oner, U.; Ciftci, E.; Ozalp, S.S.; Colak, E. Differential expression of P16 and P21 in benign and malignant uterine smooth muscle tumors. Arch. Gynecol. Obstet., 2011, 284(2), 483-490.
[2]
Navarro, A.; Yin, P.; Monsivais, D.; Lin, S.M.; Du, P.; Wei, J.J.; Bulun, S.E. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PLoS One, 2012, 7(3)e33284
[3]
Dimitrova, I.K.; Richer, J.K.; Rudolph, M.C.; Spoelstra, N.S.; Reno, E.M.; Medina, T.M.; Bradford, A.P. Gene expression profiling of multiple leiomyomata uteri and matched normal tissue from a single patient. Fertil. Steril., 2009, 91(6), 2650-2663.
[4]
Kim, Y-S.; Kim, T-H.; Lee, H-H.; Song, K.R.E. Pathobiology of myomatosis uteri: The underlying knowledge to support our clinical practice. Arch. Gynecol. Obstet., 2018, 297, 1339-1341.
[5]
Ura, B.; Scrimin, F.; Zanconati, F.; Arrigoni, G.; Monasta, L.; Romano, A.; Banco, R.; Zweyer, M.; Milani, D.; Ricci, G. Two-dimensional gel electrophoresis analysis of the leiomyoma interstitial fluid reveals altered protein expression with a possible involvement in pathogenesis. Oncol. Rep., 2015, 33(5), 2219-2226.
[6]
Yu, L.; Saile, K.; Swartz, C.D.; He, H.; Zheng, X.; Kissling, G.E.; Di, X.; Lucas, S.; Robboy, S.J.; Dixon, D. Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas. Mol. Med., 2008, 14(5-6), 264-275.
[7]
Segars, J.H.; Al-Hendy, A. Seminars in Reproductive Medicine; Thieme Medical Publishers: Germany, 2017.
[8]
Zaitseva, M.; Vollenhoven, B.J.; Rogers, P.A. Retinoic acid pathway genes show significantly altered expression in uterine fibroids when compared with normal myometrium. MHR: Basic Sci. Reprod. Med., 2007, 13(8), 577-585.
[9]
Wu, X.; Serna, V.A.; Thomas, J.; Qiang, W.; Blumenfeld, M.L.; Kurita, T. Subtype-specific tumor-associated fibroblasts contribute to the pathogenesis of uterine leiomyoma. Cancer Res., 2017, 77, 6891-6901.
[10]
Tal, R.; Segars, J.H. The role of angiogenic factors in fibroid pathogenesis: Potential implications for future therapy. Hum. Reprod. Update, 2014, 20(2), 194-216.
[11]
Ura, B.; Scrimin, F.; Arrigoni, G.; Franchin, C.; Monasta, L.; Ricci, G. A proteomic approach for the identification of up-regulated proteins involved in the metabolic process of the leiomyoma. Int. J. Mol. Sci., 2016, 17(4), 540.
[12]
Islam, M.S.; Ciavattini, A.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Extracellular matrix in uterine leiomyoma pathogenesis: A potential target for future therapeutics. Hum. Reprod. Update, 2017, 24(1), 59-85.
[13]
Gandalovičová, A.; Rosel, D.; Fernandes, M.; Veselý, P.; Heneberg, P.; Čermák, V.; Petruželka, L.; Kumar, S.; Sanz-Moreno, V.; Brábek, J. Migrastatics-anti-metastatic and anti-invasion drugs: promises and challenges. Trends Cancer, 2017, 3(6), 391-406.
[14]
Sparic, R.; Mirkovic, L.; Malvasi, A.; Tinelli, A. Epidemiology of uterine myomas: A review. Int. J. Fertil. Steril., 2016, 9(4), 424-435.
[15]
Chung, Y-J.; Kang, S-Y.; Chun, H.J.; Rha, S.E.; Cho, H.H.; Kim, J.H.; Kim, M-R. Development of a model for the prediction of treatment response of uterine leiomyomas after uterine artery embolization. Int. J. Med. Sci., 2018, 15(14), 1771.
[16]
Engman, M.; Varghese, S.; Lagerstedt Robinson, K.; Malmgren, H.; Hammarsjo, A.; Bystrom, B.; Lalitkumar, P.G.; Gemzell-Danielsson, K. GSTM1 gene expression correlates to leiomyoma volume regression in response to mifepristone treatment. PLoS One, 2013, 8(12)e80114
[17]
Zhu, X-Q.; Zhu, C-D.; Lü, J-Q.; Dong, K. Identification of differential proteins in uterine leiomyoma by two-dimensional electrophoresis. Chin. J. Cancer Res., 2006, 18(3), 203-208.
[18]
Abeyrathne, P.D.; Lam, J.S. Conditions that allow for effective transfer of membrane proteins onto nitrocellulose membrane in western blots. Can. J. Microbiol., 2007, 53(4), 526-532.
[19]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[20]
Quinlivan, E.P.; Gregory, J.F., III DNA digestion to deoxyribonucleoside: A simplified one-step procedure. Anal. Biochem., 2008, 373(2), 383-385.
[21]
Chan, L.L.; Lo, S.C.; Hodgkiss, I.J. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis. Proteomics, 2002, 2(9), 1169-1186.
[22]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[23]
Yan, J.X.; Wait, R.; Berkelman, T.; Harry, R.A.; Westbrook, J.A.; Wheeler, C.H.; Dunn, M.J. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis, 2000, 21(17), 3666-3672.
[24]
Khowal, S.; Mustufa, M.M.; Chaudhary, N.K.; Naqvi, S.H.; Parvez, S.; Jain, S.K.; Wajid, S. Assessment of the therapeutic potential of hesperidin and proteomic resolution of diabetes-mediated neuronal fluctuations expediting Alzheimer’s disease. RSC Advances, 2015, 5(58), 46965-46980.
[25]
Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath., 2013, 3(3), 71-85.
[26]
Koo, B.K.; Yoon, K.J.; Yoo, K.W.; Lim, H.S.; Song, R.; So, J.H.; Kim, C.H.; Kong, Y.Y. Mind bomb-2 is an E3 ligase for Notch ligand. J. Biol. Chem., 2005, 280(23), 22335-22342.
[27]
Fu, C.; Li, J.; Wang, E. Signaling network analysis of ubiquitin-mediated proteins suggests correlations between the 26S proteasome and tumor progression. Mol. BioSys., 2009, 5(12), 1809-1816.
[28]
Liu, J.; Shen, J-X.; Wen, X-F.; Guo, Y-X.; Zhang, G-J. Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit. Rev. Oncol. Hematol., 2016, 104, 21-29.
[29]
Pier, B.D.; Bates, G.W. Potential causes of subfertility in patients with intramural fibroids. Fertil. Res. Pract., 2015, 1, 12.
[30]
Zhang, A.; He, X.; Zhang, L.; Yang, L.; Woodman, P.; Li, W. Biogenesis of Lysosome-Related Organelles complex-1 subunit 1 (BLOS1) interacts with sorting nexin 2 and the Endosomal Sorting Complex Required For Transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments. J. Biol. Chem., 2014, 289(42), 29180-29194.
[31]
Wang, Z.; Wei, H.; Yu, Y.; Sun, J.; Yang, Y.; Xing, G.; Wu, S.; Zhou, Y.; Zhu, Y.; Zhang, C.; Zhou, T.; Zhao, X.; Sun, Q.; He, F. Characterization of Ceap-11 and Ceap-16, two novel splicing-variant-proteins, associated with centrosome, microtubule aggregation and cell proliferation. J. Mol. Biol., 2004, 343(1), 71-82.
[32]
Gdynia, G.; Lehmann-Koch, J.; Sieber, S.; Tagscherer, K.E.; Fassl, A.; Zentgraf, H.; Matsuzawa, S.; Reed, J.C.; Roth, W. BLOC1S2 interacts with the HIPPI protein and sensitizes NCH89 glioblastoma cells to apoptosis. Apoptosis, 2008, 13(3), 437-447.
[33]
Premzl, M.; Sangiorgio, L.; Strumbo, B.; Marshall Graves, J.A.; Simonic, T.; Gready, J.E. Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene, 2003, 314, 89-102.
[34]
Roucou, X.; Giannopoulos, P.N.; Zhang, Y.; Jodoin, J.; Goodyer, C.G.; LeBlanc, A. Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ., 2005, 12(7), 783-795.
[35]
Tang, Z.; Ma, J.; Zhang, W.; Gong, C.; He, J.; Wang, Y.; Yu, G.; Yuan, C.; Wang, X.; Sun, Y.; Ma, J.; Liu, F.; Zhao, Y. The role of prion protein expression in predicting gastric cancer prognosis. J. Cancer, 2016, 7(8), 984-990.
[36]
Pan, Y.; Zhao, L.; Liang, J.; Liu, J.; Shi, Y.; Liu, N.; Zhang, G.; Jin, H.; Gao, J.; Xie, H.; Wang, J.; Liu, Z.; Fan, D. Cellular prion protein promotes invasion and metastasis of gastric cancer. FASEB J., 2006, 20(11), 1886-1888.
[37]
Sollazzo, V.; Galasso, M.; Volinia, S.; Carinci, F. Prion proteins (PRNP and PRND) are over-expressed in osteosarcoma. J. Orthop. Res., 2012, 30(6), 1004-1012.
[38]
Li, C.; Yu, S.; Nakamura, F.; Yin, S.; Xu, J.; Petrolla, A.A.; Singh, N.; Tartakoff, A.; Abbott, D.W.; Xin, W.; Sy, M.S. Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J. Clin. Invest., 2009, 119(9), 2725-2736.
[39]
Kechavarzi, B.; Janga, S.C. Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome Biol., 2014, 15(1), R14.
[40]
Wendel, H.G.; Silva, R.L.; Malina, A.; Mills, J.R.; Zhu, H.; Ueda, T.; Watanabe-Fukunaga, R.; Fukunaga, R.; Teruya-Feldstein, J.; Pelletier, J.; Lowe, S.W. Dissecting eIF4E action in tumorigenesis. Genes Dev., 2007, 21(24), 3232-3237.
[41]
Lukong, K.E.; Larocque, D.; Tyner, A.L.; Richard, S. Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J. Biol. Chem., 2005, 280(46), 38639-38647.
[42]
Busa, R.; Paronetto, M.P.; Farini, D.; Pierantozzi, E.; Botti, F.; Angelini, D.F.; Attisani, F.; Vespasiani, G. Sette, C. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene, 2007, 26(30), 4372-4382.
[43]
Chenard, C.A.; Richard, S. New implications for the QUAKING RNA binding protein in human disease. J. Neurosci. Res., 2008, 86(2), 233-242.
[44]
Eychenne, T.; Novikova, E.; Barrault, M.B.; Alibert, O.; Boschiero, C.; Peixeiro, N.; Cornu, D.; Redeker, V.; Kuras, L.; Nicolas, P.; Werner, M.; Soutourina, J. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture. Genes Dev., 2016, 30(18), 2119-2132.
[45]
Lin, X.; Rinaldo, L.; Fazly, A.F.; Xu, X. Depletion of med10 enhances Wnt and suppresses nodal signaling during zebrafish embryogenesis. Dev. Biol., 2007, 303(2), 536-548.
[46]
Luoh, S.W. Amplification and expression of genes from the 17q11 approximately q12 amplicon in breast cancer cells. Cancer Genet. Cytogenet., 2002, 136(1), 43-47.
[47]
Zimmerman, A.W.; Veerkamp, J.H. New insights into the structure and function of fatty acid-binding proteins. Cell. Mol. Life Sci., 2002, 59(7), 1096-1116.
[48]
Sharifi, K.; Ebrahimi, M.; Kagawa, Y.; Islam, A.; Tuerxun, T.; Yasumoto, Y.; Hara, T.; Yamamoto, Y.; Miyazaki, H.; Tokuda, N.; Yoshikawa, T.; Owada, Y. Differential expression and regulatory roles of FABP5 and FABP7 in oligodendrocyte lineage cells. Cell Tissue Res., 2013, 354(3), 683-695.
[49]
De Rosa, A.; Pellegatta, S.; Rossi, M.; Tunici, P.; Magnoni, L.; Speranza, M.C.; Malusa, F.; Miragliotta, V.; Mori, E.; Finocchiaro, G.; Bakker, A. A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells. PLoS One, 2012, 7(12)e52113
[50]
Gromov, P.; Espinoza, J.A.; Talman, M.L.; Honma, N.; Kroman, N.; Timmermans Wielenga, V.; Moreira, J.M.; Gromova, I. FABP7 and HMGCS2 are novel protein markers for apocrine differentiation categorizing apocrine carcinoma of the breast. PLoS One, 2014, 9(11)e112024
[51]
Zhou, J.; Deng, Z.; Chen, Y.; Gao, Y.; Wu, D.; Zhu, G.; Li, L.; Song, W.; Wang, X.; Wu, K.; He, D. Overexpression of FABP7 promotes cell growth and predicts poor prognosis of clear cell renal cell carcinoma. Urol. Oncol., 2015, 33(3), e119-e117.
[52]
Slipicevic, A.; Jorgensen, K.; Skrede, M.; Rosnes, A.K.; Troen, G.; Davidson, B.; Florenes, V.A. The fatty acid binding protein 7 (FABP7) is involved in proliferation and invasion of melanoma cells. BMC Cancer, 2008, 8, 276.
[53]
Lorain, S.; Quivy, J.P.; Monier-Gavelle, F.; Scamps, C.; Lecluse, Y.; Almouzni, G.; Lipinski, M. Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA. Mol. Cell. Biol., 1998, 18(9), 5546-5556.
[54]
Ahmed, K.; Issinger, O-G.; Szyszka, R. Protein Kinase CK2 Cellular Function in Normal and Disease States; Springer, 2015.
[55]
Ribatti, D.; Belloni, A.S.; Nico, B.; Salà, G.; Longo, V.; Mangieri, D.; Crivellato, E.; Nussdorfer, G.G. Tryptase-and leptin-positive mast cells correlate with vascular density in uterine leiomyomas. Am. J. Obstet. Gynecol, 2007, 196(5), 470, e471-470.
[56]
Paik, S.S.; Oh, Y.H.; Jang, K.S.; Han, H.X.; Cho, S.H. Uterine leiomyoma with massive lymphoid infiltration: Case report and review of the literature. Pathol. Int., 2004, 54(5), 343-348.
[57]
Stoica, G.E.; Kuo, A.; Powers, C.; Bowden, E.T.; Sale, E.B.; Riegel, A.T.; Wellstein, A. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J. Biol. Chem., 2002, 277(39), 35990-35998.
[58]
Akter, K.A.; Mansour, M.A.; Hyodo, T.; Senga, T. FAM98A associates with DDX1-C14orf166-FAM98B in a novel complex involved in colorectal cancer progression. Int. J. Biochem. Cell Biol., 2017, 84, 1-13.
[59]
Rabjerg, M.; Guerra, B.; Oliván-Viguera, A.; Mikkelsen, M.L.N.; Köhler, R.; Issinger, O-G.; Marcussen, N. Nuclear localization of the CK2α-subunit correlates with poor prognosis in clear cell renal cell carcinoma. Oncotarget, 2017, 8(1), 1613.
[60]
Deng, C.X.; Brodie, S.G. Roles of BRCA1 and its interacting proteins. BioEssays, 2000, 22(8), 728-737.
[61]
Marrero, M.B.; Schieffer, B.; Li, B.; Sun, J.; Harp, J.B.; Ling, B.N. Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J. Biol. Chem., 1997, 272(39), 24684-24690.
[62]
Odabaei, G.; Chatterjee, D.; Jazirehi, A.R.; Goodglick, L.; Yeung, K.; Bonavida, B. Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv. Cancer Res., 2004, 91, 169-200.
[63]
Matsushita, K.; Tomonaga, T.; Shimada, H.; Shioya, A.; Higashi, M.; Matsubara, H.; Harigaya, K.; Nomura, F.; Libutti, D.; Levens, D.; Ochiai, T. An essential role of alternative splicing of c-myc suppressor FUSE-binding protein-interacting repressor in carcinogenesis. Cancer Res., 2006, 66(3), 1409-1417.
[64]
Yakabe, K.; Murakami, A.; Kajimura, T.; Nishimoto, Y.; Sueoka, K.; Sato, S.; Nawata, S.; Sugino, N. Functional significance of transgelin-2 in uterine cervical squamous cell carcinoma. J. Obstet. Gynaecol. Res., 2016, 42(5), 566-572.
[65]
Bos, R.; van der Groep, P.; Greijer, A.E.; Shvarts, A.; Meijer, S.; Pinedo, H.M.; Semenza, G.L.; van Diest, P.J.; van der Wall, E. Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 2003, 97(6), 1573-1581.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy