Nanoparticle Therapy for Prostate Cancer: Overview and Perspectives

Author(s): Junfu Zhang , Liying Wang , Xinru You , Tuzeng Xian , Jun Wu* , Jun Pang* .

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Traditional prostate cancer therapy and especially chemotherapy has faced many challenges. Low accumulation levels, rapid clearance or drug resistance at the tumor site have been central to why the effect of chemotherapy drugs has declined. Applications of nanotechnology to biomedicine have enabled the development of nanoparticle therapeutic carriers suited for the delivery of chemotherapeutics in cancer therapy. This review describes the current nature of nanoparticle therapeutic carriers for prostate cancer. It describes typical nanocarriers commonly used for the delivery of chemotherapy or for imaging examination. Targeting strategies and related influencing factors are investigated to find ways of enhancing treatment effects of nanoparticles. The overall purpose of this review is to further understanding and to offer recommendations on the design and development of therapeutic nanoparticles for prostate cancer.

Keywords: Nanoparticles, Chemotherapy, Prostate cancer, Drug delivery, Targeting strategies, ERP effect.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Scott, W.W.; Johnson, D.E.; Schmidt, J.E.; Gibbons, R.P.; Prout, G.R.; Joiner, J.R.; Saroff, J.; Murphy, G.P. Chemotherapy of advanced prostatic carcinoma with cyclophosphamide or 5-fluorouracil: Results of first national randomized study. J. Urol., 1975, 114(6), 909-911.
[http://dx.doi.org/10.1016/S0022-5347(17)-67172-6] [PMID: 1104900]
[3]
Elder, J.S.; Gibbons, R.P. Results of trials of the USA national prostatic cancer project. Prog. Clin. Biol. Res., 1985, 185A, 221-242.
[PMID: 3898131]
[4]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[5]
Sanna, V.; Sechi, M. Nanoparticle therapeutics for prostate cancer treatment. Nanomedicine (Lond.), 2012, 8(Suppl. 1), S31-S36.
[http://dx.doi.org/10.1016/j.nano.2012.05.009] [PMID: 22640911]
[6]
Zhao, P.; Astruc, D. Docetaxel nanotechnology in anticancer therapy. ChemMedChem, 2012, 7(6), 952-972.
[http://dx.doi.org/10.1002/cmdc.201200052] [PMID: 22517723]
[7]
Zhang, W.; Zheng, X.; Shen, S.; Wang, X. Doxorubicin-loaded magnetic nanoparticle clusters for chemo-photothermal treatment of the prostate cancer cell line PC3. Biochem. Biophys. Res. Commun., 2015, 466(2), 278-282.
[http://dx.doi.org/10.1016/j.bbrc. 2015.09.036] [PMID: 26362176]
[8]
Ganju, A.; Yallapu, M.M.; Khan, S.; Behrman, S.W.; Chauhan, S.C.; Jaggi, M. Nanoways to overcome docetaxel resistance in prostate cancer. Drug Resist. Updat., 2014, 17(1-2), 13-23.
[9]
Liu, D.; Huang, X.; Wang, Z.; Jin, A.; Sun, X.; Zhu, L.; Wang, F.; Ma, Y.; Niu, G.; Hight Walker, A.R.; Chen, X. Gold nanoparticle-based activatable probe for sensing ultralow levels of prostate-specific antigen. ACS Nano, 2013, 7(6), 5568-5576.
[http://dx.doi.org/10.1021/nn401837q] [PMID: 23683064]
[10]
Ghosh, D.; Lee, Y.; Thomas, S.; Kohli, A.G.; Yun, D.S.; Belcher, A.M.; Kelly, K.A. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol., 2012, 7(10), 677-682.
[http://dx.doi.org/10.1038/nnano.2012.146] [PMID: 22983492]
[11]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[12]
Bashir, M.N. Epidemiology of prostate cancer. Asian Pac. J. Cancer Prev., 2015, 16(13), 5137-5141.
[http://dx.doi.org/10.7314/APJCP.2015.16.13.5137] [PMID: 26225642]
[13]
Wilson, K.M.; Giovannucci, E.L.; Mucci, L.A. Lifestyle and dietary factors in the prevention of lethal prostate cancer. Asian J. Androl., 2012, 14(3), 365-374.
[http://dx.doi.org/10.1038/aja.2011. 142] [PMID: 22504869]
[14]
Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; Oxley, J.; Robinson, M.; Staffurth, J.; Walsh, E.; Bollina, P.; Catto, J.; Doble, A.; Doherty, A.; Gillatt, D.; Kockelbergh, R.; Kynaston, H.; Paul, A.; Powell, P.; Prescott, S.; Rosario, D.J.; Rowe, E.; Neal, D.E. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med., 2016, 375(15), 1415-1424.
[http://dx.doi.org/10.1056/NEJMoa1606220] [PMID: 27626136]
[15]
Wilt, T.J.; Jones, K.M.; Barry, M.J.; Andriole, G.L.; Culkin, D.; Wheeler, T.; Aronson, W.J.; Brawer, M.K. Follow-up of prostatectomy versus observation for early prostate cancer. N. Engl. J. Med., 2017, 377(2), 132-142.
[http://dx.doi.org/10.1056/NEJMoa1615869] [PMID: 28700844]
[16]
Wilt, T.J.; Brawer, M.K.; Jones, K.M.; Barry, M.J.; Aronson, W.J.; Fox, S.; Gingrich, J.R.; Wei, J.T.; Gilhooly, P.; Grob, B.M.; Nsouli, I.; Iyer, P.; Cartagena, R.; Snider, G.; Roehrborn, C.; Sharifi, R.; Blank, W.; Pandya, P.; Andriole, G.L.; Culkin, D.; Wheeler, T. Radical prostatectomy versus observation for localized prostate cancer. N. Engl. J. Med., 2012, 367(3), 203-213.
[http://dx.doi.org/10.1056/NEJMoa1113162] [PMID: 22808955]
[17]
Warde, P.; Mason, M.; Ding, K.; Kirkbride, P.; Brundage, M.; Cowan, R.; Gospodarowicz, M.; Sanders, K.; Kostashuk, E.; Swanson, G.; Barber, J.; Hiltz, A.; Parmar, M.K.B.; Sathya, J.; Anderson, J.; Hayter, C.; Hetherington, J.; Sydes, M.R.; Parulekar, W. Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: A randomised, phase 3 trial. Lancet, 2011, 378(9809), 2104-2111.
[http://dx.doi.org/10.1016/S0140-6736(11)61095-7] [PMID: 22056152]
[18]
Denham, J.W.; Steigler, A.; Lamb, D.S.; Joseph, D.; Turner, S.; Matthews, J.; Atkinson, C.; North, J.; Christie, D.; Spry, N.A.; Tai, K-H.; Wynne, C.; D’Este, C. Short term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol., 2011, 12(5), 451-459.
[http://dx.doi.org/10.1016/S1470-2045(11)70063-8] [PMID: 21440505]
[19]
Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; Widmark, A.; Johannessen, D.C.; Hoskin, P.; Bottomley, D.; James, N.D.; Solberg, A.; Syndikus, I.; Kliment, J.; Wedel, S.; Boehmer, S.; Dall’Oglio, M.; Franzén, L.; Coleman, R.; Vogelzang, N.J.; O’Bryan-Tear, C.G.; Staudacher, K.; Garcia-Vargas, J.; Shan, M.; Bruland, Ø.S.; Sartor, O. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med., 2013, 369(3), 213-223.
[http://dx.doi.org/10.1056/NEJMoa1213755] [PMID: 23863050]
[20]
Kowalczyk, K.J.; Yu, H.Y.; Ulmer, W.; Williams, S.B.; Hu, J.C. Outcomes assessment in men undergoing open retropubic radical prostatectomy, laparoscopic radical prostatectomy, and robotic-assisted radical prostatectomy. World J. Urol., 2012, 30(1), 85-89.
[http://dx.doi.org/10.1007/s00345-011-0662-7] [PMID: 21365238]
[21]
Huggins, C.; Hodges, C.V. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res., 1941, 1(4), 293-297.
[22]
James, N.D.; Spears, M.R.; Clarke, N.W.; Dearnaley, D.P.; De Bono, J.S.; Gale, J.; Hetherington, J.; Hoskin, P.J.; Jones, R.J.; Laing, R.; Lester, J.F.; McLaren, D.; Parker, C.C.; Parmar, M.K.B.; Ritchie, A.W.S.; Russell, J.M.; Strebel, R.T.; Thalmann, G.N.; Mason, M.D.; Sydes, M.R. Survival with newly diagnosed metastatic prostate cancer in the “Docetaxel Era”: Data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019). Eur. Urol., 2015, 67(6), 1028-1038.
[http://dx.doi.org/10.1016/j.eururo.2014.09.032] [PMID: 25301760]
[23]
Yagoda, A.; Petrylak, D. Cytotoxic chemotherapy for advanced hormone-resistant prostate cancer. Cancer, 1993, 71(3)(Suppl.), 1098-1109.
[http://dx.doi.org/10.1002/1097-0142(19930201) 71:3+<1098:AID-CNCR2820711432>3.0.CO;2-G] [PMID: 7679039]
[24]
Kantoff, P.W.; Halabi, S.; Conaway, M.; Picus, J.; Kirshner, J.; Hars, V.; Trump, D.; Winer, E.P.; Vogelzang, N.J. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: Results of the cancer and leukemia group B 9182 study. J. Clin. Oncol., 1999, 17(8), 2506-2513.
[http://dx.doi.org/10.1200/JCO.1999.17.8.2506] [PMID: 10561316]
[25]
Berthold, D.R.; Pond, G.R.; Soban, F.; de Wit, R.; Eisenberger, M.; Tannock, I.F.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: Updated survival in the TAX 327 study. J. Clin. Oncol., 2008, 26(2), 242-245.
[http://dx.doi.org/10.1200/JCO.2007.12.4008] [PMID: 18182665]
[26]
Tannock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I.; Rosenthal, M.A.; Eisenberger, M.A. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med., 2004, 351(15), 1502-1512.
[http://dx.doi.org/10.1056/NEJMoa040720] [PMID: 15470213]
[27]
de Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; Roessner, M.; Gupta, S.; Sartor, A.O. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet, 2010, 376(9747), 1147-1154.
[http://dx.doi.org/10.1016/S0140-6736(10)61389-X] [PMID: 20888992]
[28]
Quinn, D.I.; Shore, N.D.; Egawa, S.; Gerritsen, W.R.; Fizazi, K. Immunotherapy for castration-resistant prostate cancer: Progress and new paradigms. Urol. Oncol., 2015, 33(5), 245-260.
[http://dx.doi.org/10.1016/j.urolonc.2014.10.009] [PMID: 25575714]
[29]
Wei, X.X.; Fong, L.; Small, E.J. Prostate cancer immunotherapy with Sipuleucel-T: Current standards and future directions. Expert Rev. Vaccines, 2015, 14(12), 1529-1541.
[http://dx.doi.org/10.1586/14760584.2015.1099437] [PMID: 26488270]
[30]
Di Maio, M.; Basch, E.; Bryce, J.; Perrone, F. Patient-reported outcomes in the evaluation of toxicity of anticancer treatments. Nat. Rev. Clin. Oncol., 2016, 13(5), 319-325.
[http://dx.doi.org/10.1038/nrclinonc.2015.222] [PMID: 26787278]
[31]
Yu, X.F.; Li, Y.W.; Dong, X.H.; Yue, K.; Lin, Z.W.; Feng, X.Y.; Huang, M.J.; Zhang, W.B.; Cheng, S.Z.D. Giant surfactants based on molecular nanoparticles: Precise synthesis and solution self-assembly. J Polym Sci Pol Phys, 2014, 52(20), 1309-1325.
[http://dx.doi.org/10.1002/polb.23571]
[32]
Ling, X.; Chen, X.; Riddell, I.A.; Tao, W.; Wang, J.; Hollett, G.; Lippard, S.J.; Farokhzad, O.C.; Shi, J.; Wu, J. Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance. Nano Lett., 2018, 18(7), 4618-4625.
[http://dx.doi.org/10.1021/acs.nanolett.8b01924] [PMID: 29902013]
[33]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[34]
Da Silva, C.G.; Rueda, F.; Löwik, C.W.; Ossendorp, F.; Cruz, L.J. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials, 2016, 83, 308-320.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.006] [PMID: 26796043]
[35]
Srinivas, M.; Tel, J.; Schreibelt, G.; Bonetto, F.; Cruz, L.J.; Amiri, H.; Heerschap, A.; Figdor, C.G.; de Vries, I.J. PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI. Nanomedicine (Lond.), 2015, 10(15), 2339-2348.
[http://dx.doi.org/10.2217/nnm.15.76] [PMID: 26251876]
[36]
Yu, M.; Wu, J.; Shi, J.; Farokhzad, O.C. Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release, 2016, 240, 24-37.
[37]
Au, K.M.; Min, Y.; Tian, X.; Zhang, L.; Perello, V.; Caster, J.M.; Wang, A.Z. Improving cancer chemoradiotherapy treatment by dual controlled release of wortmannin and docetaxel in polymeric nanoparticles. ACS Nano, 2015, 9(9), 8976-8996.
[http://dx.doi.org/10.1021/acsnano.5b02913] [PMID: 26267360]
[38]
Fang, C-L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55.
[http://dx.doi.org/10.2174/1872-21013804484827] [PMID: 22946628]
[39]
Sasidharan, A.; Monteiro-Riviere, N.A. Biomedical applications of gold nanomaterials: Opportunities and challenges. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(6), 779-796.
[http://dx.doi.org/10.1002/wnan.1341] [PMID: 25808787]
[40]
An, Q.; Sun, C.; Li, D.; Xu, K.; Guo, J.; Wang, C. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl. Mater. Interfaces, 2013, 5(24), 13248-13257.
[http://dx.doi.org/10.1021/am4042367] [PMID: 24199694]
[41]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[42]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[43]
Wu, X.; Chen, J.; Wu, M.; Zhao, J.X. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics, 2015, 5(4), 322-344.
[http://dx.doi.org/10.7150/thno.10257] [PMID: 25699094]
[44]
Zhang, F.; Shan, L.; Liu, Y.; Neville, D.; Woo, J.H.; Chen, Y.; Korotcov, A.; Lin, S.; Huang, S.; Sridhar, R.; Liang, W.; Wang, P.C. An anti-PSMA bivalent immunotoxin exhibits specificity and efficacy for prostate cancer imaging and therapy. Adv. Healthc. Mater., 2013, 2(5), 736-744.
[http://dx.doi.org/10.1002/adhm.201200254] [PMID: 23184611]
[45]
Su, Y.; Yu, L.; Liu, N.; Guo, Z.; Wang, G.; Zheng, J.; Wei, M.; Wang, H.; Yang, A.G.; Qin, W.; Wen, W. PSMA specific single chain antibody-mediated targeted knockdown of Notch1 inhibits human prostate cancer cell proliferation and tumor growth. Cancer Lett., 2013, 338(2), 282-291.
[http://dx.doi.org/10.1016/j.canlet. 2013.05.035] [PMID: 23752065]
[46]
Chang, L.; Hu, J.; Chen, F.; Chen, Z.; Shi, J.; Yang, Z.; Li, Y.; Lee, L. Nanoscale Bio-Platforms for Living Cell Interrogation: Cur-rent Status and Future Perspectives. 2015.
[47]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070.
[http://dx.doi.org/dx.doi. org/10.1038/nature08956] [PMID: 20305636]
[48]
Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol., 1964, 8, 660-668.
[http://dx.doi.org/10.1016/S0022-2836(64)80115-7] [PMID: 14187392]
[49]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[50]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616-808]
[51]
Chang, H.I.; Yeh, M.K. Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine, 2012, 7, 49-60.
[PMID: 22275822]
[52]
Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev., 2015, 115(19), 10938-10966.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[53]
Belfiore, L.; Saunders, D.N.; Ranson, M.; Thurecht, K.J.; Storm, G.; Vine, K.L. Towards clinical translation of ligand-functionalized lipo-somes in targeted cancer therapy: Challenges and opportuni-ties. J. Control. Release, 2018, 277, 1-13.
[54]
Zhang, W.; Song, Y.; Eldi, P.; Guo, X.; Hayball, J.D.; Garg, S.; Albrecht, H. Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles. Int. J. Nanomedicine, 2018, 13, 293-305.
[http://dx.doi.org/10.2147/IJN.S152485] [PMID: 29391790]
[55]
Baek, S.E.; Lee, K.H.; Park, Y.S.; Oh, D.K.; Oh, S.; Kim, K.S.; Kim, D.E. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J. Control. Release, 2014, 196, 234-242.
[56]
You, X.R.; Kang, Y.; Hollett, G.; Chen, X.; Zhao, W.; Gu, Z.P.; Wu, J. Polymeric nanoparticles for colon cancer therapy: Overview and perspectives. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7779-7792.
[http://dx.doi.org/10.1039/C6TB01925K]
[57]
Wu, J.; Kamaly, N.; Shi, J.; Zhao, L.; Xiao, Z.; Hollett, G.; John, R.; Ray, S.; Xu, X.; Zhang, X.; Kantoff, P.W.; Farokhzad, O.C. Development of multinuclear polymeric nanoparticles as robust protein nanocarriers. Angew. Chem. Int. Ed. Engl., 2014, 53(34), 8975-8979.
[http://dx.doi.org/10.1002/anie.201404766] [PMID: 24990548]
[58]
Sarkar, S.; Osama, K.; Jamal, Q.M.S.; Kamal, M.A.; Sayeed, U.; Khan, M.K.A.; Siddiqui, M.H.; Akhtar, S. Advances and Implications in Nanotechnology for Lung Cancer Management. Curr. Drug Metab., 2017, 18(1), 30-38.
[http://dx.doi.org/10.2174/1389200218666161114142646] [PMID: 27842486]
[59]
Chen, Z.; Tai, Z.; Gu, F.; Hu, C.; Zhu, Q.; Gao, S. Aptamer-mediated delivery of docetaxel to prostate cancer through polymeric nanoparticles for enhancement of antitumor efficacy. Eur. J. Pharm. Biopharm., 2016, 107, 130-141.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.007] [PMID: 27393562]
[60]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[61]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
[62]
Guo, J.; Wu, S-H.; Ren, W-G.; Wang, X-L.; Yang, A-Q. Anticancer activity of bicalutamide-loaded PLGA nanoparticles in prostate cancers. Exp. Ther. Med., 2015, 10(6), 2305-2310.
[http://dx.doi.org/dx.doi. org/10.3892/etm.2015.2796] [PMID: 26668633]
[63]
Shi, J.; Xiao, Z.; Kamaly, N.; Farokhzad, O.C. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc. Chem. Res., 2011, 44(10), 1123-1134.
[http://dx.doi.org/10.1021/ar200054n] [PMID: 21692448]
[64]
Misra, S.; Heldin, P.; Hascall, V.C.; Karamanos, N.K.; Skandalis, S.S.; Markwald, R.R.; Ghatak, S. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J., 2011, 278(9), 1429-1443.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08071.x] [PMID: 21362138]
[65]
Huang, W.Y.; Lin, J.N.; Hsieh, J.T.; Chou, S.C.; Lai, C.H.; Yun, E.J.; Lo, U.G.; Pong, R.C.; Lin, J.H.; Lin, Y.H. Nanoparticle targeting CD44-positive cancer cells for site-specific drug delivery in prostate cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(45), 30722-30734.
[http://dx.doi.org/10.1021/acsami.6b10029] [PMID: 27786455]
[66]
Jia, Y-P.; Ma, B-Y.; Wei, X-W.; Qian, Z-Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin. Chem. Lett., 2017, 28(4), 691-702.
[http://dx.doi.org/10.1016/j.cclet.2017.01.021]
[67]
Liang, J.J.; Zhou, Y.Y.; Wu, J.; Ding, Y. Gold nanoparticle-based drug delivery platform for antineoplastic chemotherapy. Curr. Drug Metab., 2014, 15(6), 620-631.
[http://dx.doi.org/10.2174/1389200215666140605131427] [PMID: 24909418]
[68]
Kumar, A.; Huo, S.; Zhang, X.; Liu, J.; Tan, A.; Li, S.; Jin, S.; Xue, X.; Zhao, Y.; Ji, T.; Han, L.; Liu, H.; Zhang, X.; Zhang, J.; Zou, G.; Wang, T.; Tang, S.; Liang, X.J. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano, 2014, 8(5), 4205-4220.
[http://dx.doi.org/10.1021/nn500152u] [PMID: 24730557]
[69]
Xiao, Z.; Ji, C.; Shi, J.; Pridgen, E.M.; Frieder, J.; Wu, J.; Farokhzad, O.C. DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11853-11857.
[http://dx.doi.org/10.1002/anie.201204018] [PMID: 23081716]
[70]
Qiu, S.; Granet, R.; Mbakidi, J.P.; Brégier, F.; Pouget, C.; Micallef, L.; Sothea-Ouk, T.; Leger, D.Y.; Liagre, B.; Chaleix, V.; Sol, V. Delivery of tanshinone IIA and α-mangostin from gold/PEI/cyclodextrin nanoparticle platform designed for prostate cancer chemotherapy. Bioorg. Med. Chem. Lett., 2016, 26(10), 2503-2506.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.097] [PMID: 27040657]
[71]
Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4(7), 3689-3696.
[http://dx.doi.org/10.1021/nn901877h] [PMID: 20550178]
[72]
Yu, M.; Zhou, C.; Liu, L.; Zhang, S.; Sun, S.; Hankins, J.D.; Sun, X.; Zheng, J. Interactions of renal-clearable gold nanoparticles with tumor microenvironments: Vasculature and acidity effects. Angew. Chem. Int. Ed. Engl., 2017, 56(15), 4314-4319.
[http://dx.doi.org/10.1002/anie.201612647] [PMID: 28295960]
[73]
Nandwana, V.; De, M.; Chu, S.; Jaiswal, M.; Rotz, M.; Meade, T.J.; Dravid, V.P. Theranostic magnetic nanostructures (MNS) for cancer. In: Cancer Treat. Res; , 2015; 166, p. 51-83.
[http://dx.doi.org/10.1007/978-3-319-16555-4_3] [PMID: 25895864]
[74]
Namdeo, M.; Saxena, S.; Tankhiwale, R.; Bajpai, M.; Mohan, Y.M.; Bajpai, S.K. Magnetic nanoparticles for drug delivery applications. J. Nanosci. Nanotechnol., 2008, 8(7), 3247-3271.
[http://dx.doi.org/10.1166/jnn.2008.399] [PMID: 19051873]
[75]
Chen, Z.; Wu, C.; Zhang, Z.; Wu, W.; Wang, X.; Yu, Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett., 2018, 29(11), 1601-1608.
[http://dx.doi.org/10.1016/j.cclet.2018.08.007]
[76]
Wadajkar, A.S.; Menon, J.U.; Kadapure, T.; Tran, R.T.; Yang, J.; Nguyen, K.T. Design and application of magnetic-based theranostic nanoparticle systems. Recent Pat. Biomed. Eng., 2013, 6(1), 47-57.
[http://dx.doi.org/10.2174/1874764711306010007] [PMID: 23795343]
[77]
Li, Y.; Huang, Y.; Wang, Z.; Carniato, F.; Xie, Y.; Patterson, J.P.; Thompson, M.P.; Andolina, C.M.; Ditri, T.B.; Millstone, J.E.; Figueroa, J.S.; Rinehart, J.D.; Scadeng, M.; Botta, M.; Gianneschi, N.C. Polycatechol nanoparticle MRI contrast agents. Small, 2016, 12(5), 668-677.
[http://dx.doi.org/10.1002/smll.201502754] [PMID: 26681255]
[78]
Yang, H.W.; Hua, M.Y.; Liu, H.L.; Tsai, R.Y.; Chuang, C.K.; Chu, P.C.; Wu, P.Y.; Chang, Y.H.; Chuang, H.C.; Yu, K.J.; Pang, S.T. Cooperative dual-activity targeted nanomedicine for specific and effective prostate cancer therapy. ACS Nano, 2012, 6(2), 1795-1805.
[http://dx.doi.org/10.1021/nn2048526] [PMID: 22248493]
[79]
Nagesh, P.K.B.; Johnson, N.R.; Boya, V.K.N.; Chowdhury, P.; Othman, S.F.; Khalilzad-Sharghi, V.; Hafeez, B.B.; Ganju, A.; Khan, S.; Behrman, S.W.; Zafar, N.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf. B Biointerfaces, 2016, 144, 8-20.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.071] [PMID: 27058278]
[80]
Ge, L.; You, X.; Huang, J.; Chen, Y.; Chen, L.; Zhu, Y.; Zhang, Y.; Liu, X.; Wu, J.; Hai, Q. Human albumin fragments nanoparticles as PTX carrier for improved anti-cancer efficacy. Front. Pharmacol., 2018, 9, 582.
[http://dx.doi.org/10.3389/fphar.2018.00582] [PMID: 29946256]
[81]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[82]
Wang, Y.; Song, Y.; Zhu, G.; Zhang, D.; Liu, X. Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy. Chin. Chem. Lett., 2018, 29(11), 1685-1688.
[http://dx.doi.org/10.1016/j.cclet.2017.12.004]
[83]
Irache, J.M.; Merodio, M.; Arnedo, A.; Camapanero, M.A.; Mirshahi, M.; Espuelas, S. Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev. Med. Chem., 2005, 5(3), 293-305.
[http://dx.doi.org/10.2174/13895570531 75335] [PMID: 15777263]
[84]
Desai, N.; Trieu, V.; Yao, Z.; Louie, L.; Ci, S.; Yang, A.; Tao, C.; De, T.; Beals, B.; Dykes, D.; Noker, P.; Yao, R.; Labao, E.; Hawkins, M.; Soon-Shiong, P. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res., 2006, 12(4), 1317-1324.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1634] [PMID: 16489089]
[85]
Qu, N.; Lee, R.J.; Sun, Y.; Cai, G.; Wang, J.; Wang, M.; Lu, J.; Meng, Q.; Teng, L.; Wang, D.; Teng, L. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer. Int. J. Nanomedicine, 2016, 11, 3451-3459.
[http://dx.doi.org/10.2147/IJN.S105420] [PMID: 27555767]
[86]
Liu, L.; Miao, Q.; Liang, G. Quantum dots as multifunctional materials for tumor imaging and therapy. Materials (Basel), 2013, 6(2), 483-499.
[http://dx.doi.org/10.3390/ma6020483] [PMID: 28809320]
[87]
Pei, H.; Zhu, S.; Yang, M.; Kong, R.; Zheng, Y.; Qu, F. Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron., 2015, 74, 909-914.
[http://dx.doi.org/10.1016/j.bios.2015.07.056] [PMID: 26257182]
[88]
Sweet, C.; Pramanik, A.; Jones, S.; Ray, P.C. Two-photon fluorescent molybdenum disulfide dots for targeted prostate cancer imaging in the biological II window. ACS Omega, 2017, 2(5), 1826-1835.
[http://dx.doi.org/10.1021/acsomega.7b00229] [PMID: 30023645]
[89]
Wang, F.; Chen, L.; Zhang, R.; Chen, Z.; Zhu, L. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J. Control. Release, 2014, 196, 222-233.
[90]
Levy, O.; Brennen, W.N.; Han, E.; Rosen, D.M.; Musabeyezu, J.; Safaee, H.; Ranganath, S.; Ngai, J.; Heinelt, M.; Milton, Y.; Wang, H.; Bhagchandani, S.H.; Joshi, N.; Bhowmick, N.; Denmeade, S.R.; Isaacs, J.T.; Karp, J.M. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials, 2016, 91, 140-150.
[http://dx.doi.org/10.1016/j.biomaterials. 2016. 03.023] [PMID: 27019026]
[91]
Yan, J.; Wang, Y.; Jia, Y.; Liu, S.; Tian, C.; Pan, W.; Liu, X.; Wang, H. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed. Pharmacother., 2017, 88, 374-383.
[92]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[93]
Zhao, Y.; Chen, H.; Chen, X.; Hollett, G.; Gu, Z.; Wu, J.; Liu, X. Targeted nanoparticles for head and neck cancers: overview and perspectives. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(6)
[http://dx.doi.org/10.1002/wnan.1469] [PMID: 28387452]
[94]
Cai, L.; Gu, Z.; Zhong, J.; Wen, D.; Chen, G.; He, L.; Wu, J.; Gu, Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov. Today, 2018, 23(5), 1126-1138.
[http://dx.doi.org/10.1016/j.drudis.2018.02.009] [PMID: 29501708]
[95]
Wu, J.; Zhao, L.; Xu, X.; Bertrand, N.; Choi, W.I.; Yameen, B.; Shi, J.; Shah, V.; Mulvale, M.; MacLean, J.L.; Farokhzad, O.C. Hydrophobic Cysteine Poly(disulfide)-based Redox-Hypersensitive Nanoparticle Platform for Cancer Theranostics. Angew. Chem. Int. Ed. Engl., 2015, 54(32), 9218-9223.
[http://dx.doi.org/10.1002/anie.201503863] [PMID: 26119453]
[96]
Maeda, H. SMANCS and polymer-conjugated macromolecular drugs: Advantages in cancer chemotherapy. Adv. Drug Deliv. Rev., 2001, 46(1-3), 169-185.
[http://dx.doi.org/10.1016/S0169-409X (00)00134-4] [PMID: 11259839]
[97]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[98]
Zhu, X.; Wu, J.; Shan, W.; Zhou, Z.; Liu, M.; Huang, Y. Sub-50 nm Nanoparticles with biomimetic surfaces to sequentially overcome the mucosal diffusion barrier and the epithelial absorption barrier. Adv. Funct. Mater., 2016, 26(16), 2728-2738.
[http://dx.doi.org/dx. doi.org/10.1002/adfm.201505000]
[99]
Ge, L.; You, X.; Huang, K.; Kang, Y.; Chen, Y.; Zhu, Y.; Ren, Y.; Zhang, Y.; Wu, J.; Qian, H. Screening of novel RGD peptides to modify nanoparticles for targeted cancer therapy. Biomater. Sci., 2017, 6(1), 125-135.
[http://dx.doi.org/10.1039/C7BM00776K] [PMID: 29142995]
[100]
Zhu, X.; Wu, J.; Shan, W.; Tao, W.; Zhao, L.; Lim, J.M.; D’Ortenzio, M.; Karnik, R.; Huang, Y.; Shi, J.; Farokhzad, O.C. Polymeric nanoparticles amenable to simultaneous installation of exterior targeting and interior therapeutic proteins. Angew. Chem. Int. Ed. Engl., 2016, 55(10), 3309-3312.
[http://dx.doi.org/10.1002/anie.201509183] [PMID: 26846161]
[101]
Cai, L.; Gu, Z.; Zhong, J.; Wen, D.; Chen, G.; He, L.; Wu, J.; Gu, Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov. Today, 2018, 23(5), 1126-1138.
[http://dx.doi.org/dx.doi. org/10.1016/j.drudis.2018.02.009] [PMID: 29501708]
[102]
Mangadlao, J.D.; Wang, X.; McCleese, C.; Escamilla, M.; Ramamurthy, G.; Wang, Z.; Govande, M.; Basilion, J.P.; Burda, C. Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano, 2018, 12(4), 3714-3725.
[http://dx.doi.org/10.1021/acsnano.8b00940] [PMID: 29641905]
[103]
Xu, X.; Wu, J.; Liu, Y.; Saw, P.E.; Tao, W.; Yu, M.; Zope, H.; Si, M.; Victorious, A.; Rasmussen, J.; Ayyash, D.; Farokhzad, O.C.; Shi, J. multifunctional envelope-Type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano, 2017, 11(3), 2618-2627.
[http://dx.doi.org/10.1021/acsnano.6b07195] [PMID: 28240870]
[104]
Chen, Z.; Tai, Z.; Gu, F.; Hu, C.; Zhu, Q.; Gao, S. Aptamer-mediated delivery of docetaxel to prostate cancer through polymeric nanoparticles for enhancement of anti-tumor efficacy. Eur. J. Pharm. Biopharm., 2016, 107, 130-141.
[105]
Zhang, R.; Xiong, C.; Huang, M.; Zhou, M.; Huang, Q.; Wen, X.; Liang, D.; Li, C. Peptide-conjugated polymeric micellar nanoparticles for Dual SPECT and optical imaging of EphB4 receptors in prostate cancer xenografts. Biomaterials, 2011, 32(25), 5872-5879.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.070] [PMID: 21612822]
[106]
Agemy, L.; Sugahara, K.N.; Kotamraju, V.R.; Gujraty, K.; Girard, O.M.; Kono, Y.; Mattrey, R.F.; Park, J.H.; Sailor, M.J.; Jimenez, A.I.; Cativiela, C.; Zanuy, D.; Sayago, F.J.; Aleman, C.; Nussinov, R.; Ruoslahti, E. Nanoparticle-induced vascular blockade in human prostate cancer. Blood, 2010, 116(15), 2847-2856.
[http://dx.doi.org/dx.doi. org/10.1182/blood-2010-03-274258] [PMID: 20587786]
[107]
Alexis, F.; Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 2010, (197), 55-86.
[http://dx.doi.org/10.1007/978-3-642-00477-3_2] [PMID: 20217526]
[108]
Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[109]
Dreher, M.R.; Liu, W.; Michelich, C.R.; Dewhirst, M.W.; Yuan, F.; Chilkoti, A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst., 2006, 98(5), 335-344.
[http://dx.doi.org/10.1093/jnci/djj070] [PMID: 16507830]
[110]
Jiang, W.; Kim, B.Y.; Rutka, J.T.; Chan, W.C. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol., 2008, 3(3), 145-150.
[http://dx.doi.org/10.1038/nnano.2008.30] [PMID: 18654486]
[111]
Chen, X.; Ling, X.; Zhao, L.; Xiong, F.; Hollett, G.; Kang, Y.; Barrett, A.; Wu, J. Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy. ACS Appl. Mater. Interfaces, 2018, 10(40), 33976-33985.
[http://dx.doi.org/10.1021/acsami.8b11571] [PMID: 30203956]
[112]
Mei, K.C.; Bai, J.; Lorrio, S.; Wang, J.T.; Al-Jamal, K.T. Investigating the effect of tumor vascularization on magnetic targeting in vivo using retrospective design of experiment. Biomaterials, 2016, 106, 276-285.
[http://dx.doi.org/10.1016/j.biomaterials. 2016.08.030] [PMID: 27573135]
[113]
Ghitescu, L.; Bendayan, M. Immunolabeling efficiency of protein A gold complexes. J. Histochem. Cytochem., 1990, 38(11), 1523-1530.
[http://dx.doi.org/10.1177/38.11.2212613] [PMID: 2212613]
[114]
Bertrand, N.; Leroux, J.C. The journey of a drug-carrier in the body: An anatomo-physiological perspective. J. Control. Release, 2012, 161(2), 152-163.
[115]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[116]
He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010, 31(13), 3657-3666.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[117]
You, X.; Gu, Z.; Huang, J.; Kang, Y.; Chu, C.C.; Wu, J. Arginine-based poly(ester amide) nanoparticle platform: From structure-property relationship to nucleic acid delivery. Acta Biomater., 2018, 74, 180-191.
[http://dx.doi.org/10.1016/j.actbio.2018.05.040] [PMID: 29803783]
[118]
Huerta, C. Aberturas, Mdel.R.; Molpeceres, J. Nimesulide-loaded nanoparticles for the potential coadjuvant treatment of prostate cancer. Int. J. Pharm., 2015, 493(1-2), 152-160.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.027] [PMID: 26205513]
[119]
Vincent, A.; Babu, S.; Heckert, E.; Dowding, J.; Hirst, S.M.; Inerbaev, T.M.; Self, W.T.; Reilly, C.M.; Masunov, A.E.; Rahman, T.S.; Seal, S. Protonated nanoparticle surface governing ligand tethering and cellular targeting. ACS Nano, 2009, 3(5), 1203-1211.
[http://dx.doi.org/10.1021/nn9000148] [PMID: 19368374]
[120]
Kocbek, P.; Obermajer, N.; Cegnar, M.; Kos, J.; Kristl, J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J. Control. Release, 2007, 120(1-2), 18-26.
[121]
Zhu, X.; Wu, J.; Shan, W.; Tao, W.; Zhao, L.; Lim, J.M.; D’Ortenzio, M.; Karnik, R.; Huang, Y.; Shi, J.; Farokhzad, O.C. Polymeric Nanoparticles amenable to simultaneous installation of exterior targeting and interior therapeutic proteins. Angew. Chem. Int. Ed. Engl., 2016, 55(10), 3309-3312.
[http://dx.doi.org/10.1002/anie.201509183] [PMID: 26846161]
[122]
Chithrani, B.D.; Chan, W.C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett., 2007, 7(6), 1542-1550.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[123]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[124]
Cho, H.S.; Dong, Z.; Pauletti, G.M.; Zhang, J.; Xu, H.; Gu, H.; Wang, L.; Ewing, R.C.; Huth, C.; Wang, F.; Shi, D. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: A multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano, 2010, 4(9), 5398-5404.
[http://dx.doi.org/10.1021/nn101000e] [PMID: 20707381]
[125]
Shukla, S.; Ablack, A.L.; Wen, A.M.; Lee, K.L.; Lewis, J.D.; Steinmetz, N.F. Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle Potato virus X. Mol. Pharm., 2013, 10(1), 33-42.
[http://dx.doi.org/10.1021/mp300240m] [PMID: 22731633]
[126]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[127]
Cherian, A.M.; Nair, S.V.; Lakshmanan, V.K. The role of nanotechnology in prostate cancer theranostic applications. J. Nanosci. Nanotechnol., 2014, 14(1), 841-852.
[http://dx.doi.org/10.1166/jnn.2014.9052] [PMID: 24730302]
[128]
Ouvinha de Oliveira, R.; de Santa Maria, L.C.; Barratt, G. Nanomedicine and its applications to the treatment of prostate cancer. Ann. Pharm. Fr., 2014, 72(5), 303-316.
[http://dx.doi.org/10.1016/j.pharma.2014.04.006] [PMID: 25220226]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 1
Year: 2019
Page: [57 - 73]
Pages: 17
DOI: 10.2174/1568026619666190125145836
Price: $58

Article Metrics

PDF: 29
HTML: 6