Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Nutrients Mediate Bioavailability and Turnover of Proteins in Mammals

Author(s): Cunxi Nie, Fei Xie, Ning Ma, Yueyu Bai*, Wenju Zhang* and Xi Ma*

Volume 20, Issue 7, 2019

Page: [661 - 665] Pages: 5

DOI: 10.2174/1389203720666190125111235

Price: $65

Abstract

As a major component of biologically active compounds in the body, proteins contribute to the synthesis of body tissues for the renewal and growth of the body. The high level of dietary protein and the imbalance of amino acid (AA) composition in mammals result in metabolic disorders, inefficient utilization of protein resources and increased nitrogen excretion. Fortunately, nutritional interventions can be an effective way of attenuating the nitrogen excretion and increasing protein utilization, which include, but are not limited to, formulating the AA balance and protein-restricted diet supplementing with essential AAs, and adding probiotics in the diet. This review highlights recent advances in the turnover of dietary proteins and mammal’s metabolism for health, in order to improve protein bioavailability through nutritional approach.

Keywords: Dietary protein, turnover, bioavailability, amino acid balance, gut microbiota, probiotics.

Graphical Abstract
[1]
Bröer, S. The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch., 2014, 466, 155-172.
[2]
Mangano, K.M.; Sahni, S.; Kerstetter, J.E. Dietary protein is beneficial to bone health under conditions of adequate calcium intake: an update on clinical research. Curr. Opin. Clin. Nutr. Metab. Care, 2014, 17(1), 69-74.
[3]
Bonjour, J.P. The dietary protein, IGF-I skeletal health axis. Horm. Mol. Biol. Clin. Investig., 2016, 28(1), 39-53.
[4]
Lv, C.; Liu, S.; Xi, J.; Xu, L.; Cheng, Y.; Li, W.; Zhang, Y.; Wang, G.; Wei, W.; Shi, H.; Huang, S.; Wang, N.; Hao, L. The mechanism of dietary protein modulates bone metabolism via alterations in members of the GH/IGF axis. Curr. Protein Pept. Sci., 2019, 20(2), 115-124.
[5]
López-Oliva, M.E.; Agis-Torres, A.; Muñoz-Martínez, E. The modulator effect of GH on skeletal muscle lysosomal enzymes is dietary protein dependent. Growth Horm. IGF Res., 2007, 17, 137-148.
[6]
Joslowski, G.; Remer, T.; Assmann, K.E.; Krupp, D.; Cheng, G.; Garnett, S.P.; Kroke, A.; Wudy, S.A.; Günther, A.L.; Buyken, A.E. Animal protein intakes during early life and adolescence differ in their relation to the growth hormone-insulin-like-growth-factor axis in young adulthood. J. Nutr., 2013, 143, 147-200.
[7]
Nebot, E.; Erben, R.G.; Porres, J.M.; Femia, P.; Camiletti-Moirón, D.; Aranda, P.; López-Juradoab, M.; Aparicio, V.A. Effects of the amount and source of dietary protein on bone status in rats. Food Funct., 2014, 4, 716-723.
[8]
Gaffneystomberg, E.; Cao, J.J.; Lin, G.G.; Wulff, C.R.; Murphy, N.E.; Young, A.J.; McClung, J.P.; Pasiakos, S.M. Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats. J. Nutr., 2014, 6, 821-829.
[9]
Wright, C.S.; Zhou, J.; Sayer, R.D.; Kim, J.E.; Campbell, W.W. Effects of a high-protein diet including whole eggs on muscle composition and indices of cardiometabolic health and systemic inflammation in older adults with overweight or obesity: A randomized controlled trial. Nutrients, 2018, 10, 946.
[10]
Li, Y.; Li, F.; Chen, S.; Duan, Y.; Guo, Q.; Wang, W.; Wen, C.; Yin, Y. Chronic consumption of protein-restricted diets modulates lipid and energy metabolism in skeletal muscle of growing pigs. J. Agric. Food Chem., 2016, 64, 9412-9420.
[11]
Pujos-Guillot, E.; Brandolini-Bunlon, M.; Fouillet, H.; Joly, C.; Martin, J.; Huneau, J.; Dardevet, D.; Mariotti, F. Metabolomics reveals that the type of protein in a high-fat meal modulates postprandial mitochondrial overload and incomplete substrate oxidation in healthy overweight men. J. Nutr., 2018, 148, 876-884.
[12]
Salvatierra, C.S.; Reis, S.R.; Pessoa, A.F.; De Souza, L.M.; Stoppiglia, L.F.; Veloso, R.V.; Reiss, M.A.B.; Carneiro, E.M.; Boschero, A.C.; Colodel, E.M.; Arantes, V.C.; Latorraca, M.Q. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats. An. Acad. Bras. Cienc., 2015, 87(2), 1007-1018.
[13]
de Oliveira, J.C. de Moura, E.G.; de Miranda, R.A.; Moraes, A.; Barella, L.F.; da Conceição, E.P.S.; Gomes, R.M. Ribeiro, T.A.; Malta, A.; Martins, I.P.; da Silva Franco, C.C.; Lisboa, P.C.; de Freitas Mathias, P.C. Low protein diet in puberty impairs testosterone output and energy metabolism in male rats. J. Endocr., 2018, 237(3), 243-254.
[14]
Ma, X.; Han, M.; Li, D.; Hu, S.; Gilbreath, K.R.; Bazer, F.W.; Wu, G. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids, 2017, 49, 957-964.
[15]
Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[16]
Morita, T.; Kasaoka, S.; Kiriyama, S. Physiological functions of resistant proteins: proteins and peptides regulating large bowel fermentation of indigestible polysaccharide. J. AOAC Int., 2004, 87, 792-796.
[17]
Pluske, J.R.; Pethick, D.W.; Hopwood, D.E.; Hampson, D.J. Nutritional influences on some major enteric bacterial diseases of pigs. Nutr. Res. Rev., 2002, 15, 333-371.
[18]
Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of dietary protein and peptides by Intestinal Microbes and their Impacts on Gut. Curr. Protein Pept. Sci., 2015, 16, 646-654.
[19]
Woyengo, T.A.; Weihrauch, D.; Nyachoti, C.M. Effect of dietary phytic acid on performance and nutrient uptake in the small intestine of piglets. J. Anim. Sci., 2012, 90, 543-549.
[20]
Zhao, J.; Zhang, X.; Liu, H.; Brownc, M.A.; Qiao, S. Dietary protein and gut microbiota composition and function. Curr. Protein Pept. Sci., 2019, 20(2), 145-154.
[21]
Lara, A.; Menoza, G.D.; Landois, L.; Barcena, R.; Sánchez-Torres, M.T.; Rojo, R.; Ayala, J.; Vega, S. Milk production in Holstein cows supplemented with different levels of ruminally protected methionine. Livest. Sci., 2006, 105, 105-108.
[22]
Bishu, S. Sensing of nutrients and microbes in the gut. Curr. Opin. Gastroenterol., 2016, 32, 86-95.
[23]
Kim, S.W.; Chena, H.; Parnsen, W. Regulatory role of amino acids in pigs fed on protein-restricted diets. Curr. Protein Pept. Sci., 2019, 20(2), 132-138.
[24]
Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched chain amino acids: Beyond nutrition metabolism. Int. J. Mol. Sci., 2018, 19(4), 954.
[25]
Han, M.; Wang, C.; Liu, P.; Li, D.; Li, Y.; Ma, X. Dietary fiber gap and host gut microbiota. Protein Pept. Lett., 2017, 24, 388-396.
[26]
Ren, M.; Liu, C.; Zeng, X.; Yue, L.; Mao, X.; Qiao, S.; Wang, J. Amino acids modulates the intestinal proteome associated with immune and stress response in weaning pig. Mol. Biol. Rep., 2014, 41(6), 3611-3620.
[27]
Wang, D.; Wan, X.B.; Peng, J.; Xiong, Q.; Niu, H.D.; Li, H.; Chai, J.; Jiang, S.W. The effects of reduced dietary protein level on amino acid transporters and mTOR signaling pathway in pigs. Biochem. Biophys. Res. Commun., 2017, 485(2), 319-327.
[28]
Zhao, G. Improving feed protein utilization rate in cattle through nutritional approaches. Curr. Protein Pept. Sci., 2019, 20(2), 164-171.
[29]
Ma, N.; Tian, Y.; Wu, Y.; Ma, X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci., 2017, 18, 795-808.
[30]
He, L.; Han, M.; Farrar, S.; Ma, X. Editorial: Impacts and regulation of dietary nutrients on gut microbiome and immunity. Protein Pept. Lett., 2017, 24(5), 380-381.
[31]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol., 2018, 9, 5.
[32]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11, 506-514.
[33]
de Moreno de LeBlanc, A.; LeBlanc, J.G. Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World J. Gastroenterol., 2014, 20, 16518-16528.
[34]
Giorgetti, G.; Brandimarte, G.; Fabiocchi, F.; Ricci, S.; Flamini, P.; Sandri, G.; Trotta, M.C.; Elisei, W.; Penna, A.; Lecca, P.G.; Picchio, M.; Tursi, A. Interactions between innate immunity, microbiota, and probiotics. J. Immunol. Res., 2015, 2015501361
[35]
Wang, J.; Ji, H. Influence of probiotics on dietary protein digestion and utilization in the gastrointestinal tract. Curr. Protein Pept. Sci., 2019, 20(2), 125-131.
[36]
Fernandez-Alarcon, M.F.; Trottier, N.; Steibel, J.P.; Lunedo, R.; Campos, D.M.; Santana, A.M.; Pizauro, J.M., Jr; Furlan, R.L.; Furlan, L.R. Interference of age and supplementation of direct-fed microbial and essential oil in the activity of digestive enzymes and expression of genes related to transport and digestion of carbohydrates and proteins in the small intestine of broilers. Poult. Sci., 2017, 96, 2920-2930.
[37]
Standen, B.T.; Rodiles, A.; Peggs, D.L.; Davies, S.J.; Santos, G.A.; Merrifield, D.L. Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Appl. Microbiol. Biotechnol., 2015, 99, 8403-8417.
[38]
Nyangale, E.P.; Mottram, D.S.; Gibson, G.R. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J. Proteome Res., 2012, 11, 5573-5585.
[39]
Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int., 2012, 95, 50-60.
[40]
Jantchou, P.; Morois, S.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Carbonnel, F. Animal protein intake and risk of inflammatory bowel disease: The E3N prospective study. Am. J. Gastroenterol., 2010, 105, 2195-2201.
[41]
Chen, J.; Li, Y.; Tian, Y.; Huang, C.; Li, D.; Zhong, Q.; Ma, X. Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Curr. Protein Pept. Sci., 2015, 16, 592-603.
[42]
Zhang, Y.; Zhao, X.; Zhu, Y.; Ma, J.; Ma, H.; Zhang, H. Probiotic mixture protects dextran sulfate sodium-induced colitis by altering tight junction protein expressions and increasing tregs. Mediators Inflamm., 2018, 49416391

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy