Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

Tuning the Photocatalytic Performance of Plasmonic Nanocomposites (ZnO/Aux) Driven in Visible Light

Author(s): Aneeya K. Samantara, Debasrita Dash, Dipti L. Bhuyan, Namita Dalai and Bijayalaxmi Jena*

Volume 8, Issue 1, 2019

Page: [56 - 61] Pages: 6

DOI: 10.2174/2211544708666190124114519

Price: $65

Abstract

In this article, we explored the possibility of controlling the reactivity of ZnO nanostructures by modifying its surface with gold nanoparticles (Au NPs). By varying the concentration of Au with different wt% (x = 0.01, 0.05, 0.08, 1 and 2), we have synthesized a series of (ZnO/Aux) nanocomposites (NCs). A thorough investigation of the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface has been carried out. It was observed that ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity among all concentrations of Au on the ZnO surface, which degrades the dye concentration within 2 minutes of visible light exposure. It was further revealed that with an increase in the size of plasmonic nanoparticles beyond 0.08%, the accessible surface area of the Au nanoparticle decreases. The photon absorption capacity of Au nanoparticle decreases beyond 0.08% resulting in a decrease in electron transfer rate from Au to ZnO and a decrease of photocatalytic activity.

Background: Due to the industrialization process, most of the toxic materials go into the water bodies, affecting the water and our ecological system. The conventional techniques to remove dyes are expensive and inefficient. Recently, heterogeneous semiconductor materials like TiO2 and ZnO have been regarded as potential candidates for the removal of dye from the water system.

Objective: To investigate the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface and the effect of the size of Au NPs for photocatalytic performance in the degradation process.

Method: A facile microwave method has been adopted for the synthesis of ZnO nanostructure followed by a reduction of gold salt in the presence of ZnO nanostructure to form the composite.

Results: ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity which degrades the dye concentration within 2 minutes of visible light exposure. The schematic mechanism of electron transfer rate was discussed.

Conclusion: Raspberry shaped ZnO nanoparticles modified with different percentages of Au NPs showed good photocatalytic behavior in the degradation of dye molecules. The synergetic effect of unique morphology of ZnO and well anchored Au nanostructures plays a crucial role.

Keywords: Semiconductors, metal oxides, plasmonic nanocomposites, nanostructures, photocatalytic activity, photon.

Graphical Abstract
[1]
Mohanty, B.; Naik, K.K.; Sahoo, S.; Jena, B.; Chakraborty, B.; Rout, C.; Jena, B.K. Efficient photoelectrocatalytic activity of CuWO4 nanoplates towards the oxidation of NADH driven in visible light. Chem. Select, 2018, 3, 9008-9012.
[2]
Samantara, A.K.; Kamila, S.; Ghosh, A.; Jena, B.K. Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochim. Acta, 2018, 263, 147-157.
[3]
Zhao, Y.; Li, X.; Liu, J.; Wang, C.; Zhao, Y.; Yue, G. MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk–shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl. Mater. Interfaces, 2016, 8, 6472-6480.
[4]
Zhao, X.D.; Li, Y.Q.; Xiang, H.Y.; Zhang, Y.B.; Chen, J.D.; Xu, L.H.; Tang, J.X. Efficient color-stable inverted white organic light emitting diodes with outcoupling-enhanced ZnO layer. ACS Appl. Mater. Interfaces, 2017, 9, 2767-277.
[5]
Chung, W.; Nan, H.; Hao, Z.; Xin, J. Enhanced performance of nanocrystalline ZnO DNA biosensor via introducing electrochemical covalent biolinkers. ACS Appl. Mater. Interfaces, 2015, 7, 7605-7612.
[6]
Gupta, K.; Singh, R.P.; Pandey, A. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. Coli. Beilstein J. Nanotechnol., 2013, 4, 345-351.
[7]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95, 69-96.
[8]
Hariharan, C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles. Revisited Appl. Catal. A, 2006, 304, 55-61.
[9]
Cao, H.; Xu, J.Y.; Zhang, D.Z.; Chang, S-H.; Ho, S.T.; Seelig, E.W.; Liu, X.; Chang, R.P.H. Spatial confinement of laser light in active random media. Phys. Rev. Lett., 2008, 84, 5584.
[10]
Sun, X.W.; Huang, J.Z.; Wang, J.X.; Xu, Z. A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm. Nano Lett., 2008, 8, 1219-1223.
[11]
Bae, S.Y.; Seo, H.W.; Park, J. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J. Phys. Chem. B, 2004, 108, 5206-5210.
[12]
Zhang, Z.; Liu, S.; Chow, S.; Han, Y.M. Modulation of the morphology of ZnO nanostructures via aminolytic reaction: from nanorods to nanosquamas. Langmuir, 2006, 22, 6335-6340.
[13]
Wang, L.; Chen, K.; Dong, K. Synthesis of exotic zigzag ZnO nanoribbons and their optical, electrical properties. J. Phys. Chem. C, 2010, 114, 17358-17361.
[14]
Ma, X.; Zhang, H.; Ji, Y.; Xu, J.; Yang, D. Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution. Mater. Lett., 2005, 59, 3393-3397.
[15]
Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter, 2004, 16, 829-858.
[16]
Li, L.; Pan, S.; Dou, X.; Zhu, Y.; Huang, Y.; Yang, G.; Li, G.; Zhang, L. Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes. J. Phys. Chem. C, 2007, 111, 7288-7291.
[17]
Bekermann, D.; Gasparotto, A.; Barreca, D.; Bovo, L.; Devi, A.; Fischer, R.A.; Lebedev, O.I.; Maccato, C.; Tondello, E.; Tendeloo, G.V. Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process. Cryst. Growth Des., 2010, 10, 2011-2018.
[18]
Niu, M.; Huang, F.; Cui, P.; Huang, P.; Yu, Y.; Wang, Y. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano, 2010, 4, 681-688.
[19]
Liu, X.; Hu, Q.; Zhang, X.; Fang, Z.; Wang, Q. Generalized and facile synthesis of Fe3O4/MS (M = Zn, Cd, Hg, Pb, Co, and Ni) nanocomposites. J. Phys. Chem. C, 2008, 112, 12728-12735.
[20]
Ahmad, M.; Yingying, S.; Nisar, A.; Sun, H.; Shen, W.; Weie, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem., 2011, 21, 7723-7729.
[21]
Ong, W.L.; Natarajan, S.; Kloostrab, B.; Ho, G.W. Metal nanoparticle-loaded hierarchically assembled ZnO nanoflakes for enhanced photocatalytic performance. Nanoscale, 2013, 5, 5568-5575.
[22]
Wu, M.; Chen, W.J.; Shen, Y.H.; Huang, F.Z.; Li, C.H.; Li, S.K. In Situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces, 2014, 6, 15052-15060.
[23]
Kamat, P.V.; Barazzouk, S.; Hotchandani, S. Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angew. Chem. Int. Ed., 2002, 114, 2764-2767.
[24]
Kamat, P.V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C, 2007, 111, 2834-2860.
[25]
Samantara, A.K.; Sahu, S.C.; Bag, B.; Jena, B.; Jena, B.K. Photoelectrocatalytic oxidation of NADH by visible light driven plasmonic nanocomposites. J. Mater. Chem. A, 2014, 2, 12677-12680.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy