Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Prediction and Optimization of Parameters for the Al5083/ B4C Composite Wear Rate

Author(s): Ram Singh*, Malik Shadab, Rabisankar Debnath and Ram Naresh Rai

Volume 16, Issue 4, 2020

Page: [584 - 594] Pages: 11

DOI: 10.2174/1573413715666190119170217

Price: $65

Abstract

Background: Al5083 has been basically used in marine and aerospace applications where it is intended for higher corrosion resistance and better weldability. Again this, Al5083 matrix has not been suitable for various other applications such as electrical contact brushes, cylinder liners, artificial joints and helicopter blades due to its poor wear resistance properties.

Objective: The aim of this research is the optimization of wear rate of the composite with Al5083 matrix, reinforced with B4C (Boron carbide) particles, and it is achieved through the investigation of the subsequent effect: wt.% of the reinforcement, applied load and sliding speed.

Methods: The material used for specimen is Al5083 and Al5083/B4C composite which is melted at 750°C in an induction furnace; the composite is prepared by stir casting technique. It was developed by an ex-situ technique. The liquid melt poured into preheated cast iron mould for carrying out the specimen preparation of wear testing.

Results: The wear rate of Al5083/B4C composite is less than Al5083, the most influencing factor on wear rate is applied load and mechanism of deformation induced in the sliding surface of the pin was analysed by SEM (scanning electron microscope).

Conclusion: Wear rate of Al5083 and Al5083/B4C composite increases with the increase of applied load, sliding speed and decreases as the wt. % B4C increases. The contribution of applied load is more in wear rate as compared to the other two factors and the value predicted by Taguchi, obtained by RSM (Response surface methodology) and evaluated by experiment are almost similar.

Keywords: Al5083, Taguchi, wear rate, stir casting, load, sliding speed.

Graphical Abstract
[1]
Singh, M.; Mondal, D.P.; Jha, A.K.; Das, S.; Yegneswaran, A.H. Preparation and properties of cast aluminium alloy-sillimanite particle composite. Compos., Part A Appl. Sci. Manuf., 2001, 32, 787-795.
[http://dx.doi.org/10.1016/S1359-835X(00)00187-1]
[2]
Singh, M.; Mondal, D.P.; Modi, O.P.; Jha, A.K. Two-body abrasive wear behaviour of aluminium alloy-sillimanite particle reinforced composite. Wear, 2002, 253, 357-368.
[http://dx.doi.org/10.1016/S0043-1648(02)00153-9]
[3]
Singh, M.; Mondal, D.P.; Jha, A.K.; Yegneswaran, A.H. High stress abrasive wear behavior of sillimanite-reinforced Al-alloy matrix composite: A factorial design approach. J. Mater. Eng. Perform., 2003, 12, 331-338.
[http://dx.doi.org/10.1361/105994903770343196]
[4]
Singh, M.; Mondal, D.P.; Dasgupta, R.; Prasad, B.K.; Jha, A.K.; Yegneswaran, A.H. Effect of sillimanite particle reinforcement on dry sliding wear behaviour of aluminium alloy composite. Mater. Sci. Technol., 2003, 19, 303-312.
[http://dx.doi.org/10.1179/026708303225009355]
[5]
Singh, M.; Mondal, D.P.; Das, S. Abrasive wear response of aluminium alloy–sillimanite particle reinforced composite under low stress condition. Mater. Sci. Eng. A, 2006, 419, 59-68.
[http://dx.doi.org/10.1016/j.msea.2005.11.056]
[6]
Kaushik, N.C.; Rao, R.N. Influence of applied load on abrasive wear depth of hybrid Gr/SiC/Al–Mg–Si composites in a two-body condition. J. Tribol., 2017, 139, 061601
[http://dx.doi.org/10.1115/1.4035779]
[7]
Kumar, S.; Panwar, R.S.; Pandey, O.P. Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites. Ceram. Int., 2013, 39, 6333-6342.
[http://dx.doi.org/10.1016/j.ceramint.2013.01.059]
[8]
Raghunathan, N.; Ioannidis, E.K.; Sheppard, T. Fabrication, properties and structure of a high temperature light alloy composite. J. Mater. Sci., 1991, 26, 985-992.
[http://dx.doi.org/10.1007/BF00576776]
[9]
Shibata, K.; Ushio, H. Tribological application of MMC for reducing engine weight. Tribol. Int., 1994, 27, 39-44.
[http://dx.doi.org/10.1016/0301-679X(94)90061-2]
[10]
Chellman, D.J.; Langenbeck, S.L. Aerospace applications of advanced aluminum alloys. J. Key Eng. Mater., 1992, 77, 49-60.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.77-78.49]
[11]
Banerji, A.; Prasad, S.V.; Surappa, M.K.; Rohatgi, P.K. Abrasive wear of cast aluminium alloy-zircon particle composites. Wear, 1982, 82, 141-151.
[http://dx.doi.org/10.1016/0043-1648(82)90288-5]
[12]
Prasad, S.V.; Rohatgi, P.K.; Kosel, T.H. Mechanisms of material removal during low stress and high stress abrasion of aluminum alloy-zircon particle composites. Mater. Sci. Eng., 1986, 80, 213-220.
[http://dx.doi.org/10.1016/0025-5416(86)90199-0]
[13]
Joel, H. Quartz (SiO2P) reinforced chilled metal matrix composite (CMMC) for automobile applications. Mater. Des., 2009, 30, 323-329.
[http://dx.doi.org/10.1016/j.matdes.2008.04.064]
[14]
Feng, Y.C.; Geng, L.; Zheng, P.Q.; Zheng, Z.Z.; Wang, G.S. Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting. Mater. Des., 2008, 29, 2023-2026.
[http://dx.doi.org/10.1016/j.matdes.2008.04.006]
[15]
Ghasali, E.; Pakseresht, A.; Rahbari, A.; Eslami-Shahed, H.; Alizadeh, M.; Ebadzadeh, T. Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. J. Alloys Compd., 2016, 666, 366-371.
[http://dx.doi.org/10.1016/j.jallcom.2016.01.118]
[16]
Salem, M.A.; El-Batanony, I.G.; Ghanem, M.; Elaal, M.I.A. Effect of the matrix and reinforcement sizes on the microstructure, the physical and mechanical properties of Al-SiC composites. J. Eng. Mater. Technol., 2017, 139, 011007
[http://dx.doi.org/10.1115/1.4034959]
[17]
Naveed, M.; Khan, A.R. Ultimate tensile strength of heat treated hybrid metal matrix composites. IJSR, 2015, 4, 146-151.
[18]
Sahin, Y. Preparation and some properties of SiC particle reinforced aluminium alloy composites. Mater. Des., 2003, 24(8), 671-679.
[http://dx.doi.org/10.1016/S0261-3069(03)00156-0]
[19]
Ramesh, C.S.; Keshavamurthy, R.; Pramod, S.; Koppad, P.G. Abrasive wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites. J. Mater. Process. Technol., 2011, 211, 1423-1431.
[http://dx.doi.org/10.1016/j.jmatprotec.2011.03.015]
[20]
Baradeswaran, A.; Perumal, A.E. Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos. B Eng., 2013, 54, 146-152.
[21]
Włodarczyk-Fligier, A.; Dobrzański, L.A.; Kremzer, M.; Adamiak, M. Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles. J. Achiev. Mater. Manuf. Eng., 2008, 27, 99.
[22]
Yılmaz, O.; Buytoz, S. Abrasive wear of Al2O3-reinforced aluminium-based MMCs. Compos. Sci. Technol., 2001, 61, 2381-2392.
[http://dx.doi.org/10.1016/S0266-3538(01)00131-2]
[23]
Tang, F.; Wu, X.; Ge, S.; Ye, J.; Zhu, H.; Hagiwara, M.; Schoenung, J.M. Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites. Wear, 2008, 264, 555-561.
[http://dx.doi.org/10.1016/j.wear.2007.04.006]
[24]
Chen, Z.; Thomson, P.F. Friction against superplastic aluminium alloys. Wear, 1996, 201, 227-232.
[http://dx.doi.org/10.1016/S0043-1648(96)07254-7]
[25]
Rao, R.N.; Das, S. Wear coefficient and reliability of sliding wear test procedure for high strength aluminium alloy and composite. Mater. Des., 2010, 31, 3227-3233.
[http://dx.doi.org/10.1016/j.matdes.2010.02.017]
[26]
Panagopoulos, C.N.; Georgiou, E. Cold rolling and lubricated wear of 5083 aluminium alloy. Mater. Des., 2010, 31, 1050-1055.
[http://dx.doi.org/10.1016/j.matdes.2009.09.056]
[27]
Khan, M.; Rehman, A.; Aziz, T.; Naveed, K.; Ahmad, I.; Subhani, T. Cold formability of friction stir processed aluminum composites containing carbon nanotubes and boron carbide particles. J. Mater. Sci. Eng. A, 2017, 696, 552-557.
[http://dx.doi.org/10.1016/j.msea.2017.04.074]
[28]
Baradeswaran, A.; Perumal, A.E. Study on mechanical and wear properties of Al 7050/Al2O3/graphite hybrid composite. Compos. Part B, 2014, 56, 464-471.
[http://dx.doi.org/10.1016/j.compositesb.2013.08.013]
[29]
Ramesh, C.S.; Keshavamurthy, R.; Channabasappa, B.H.; Pramod, S. Friction and wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites. Tribol. Int., 2010, 43, 623-634.
[http://dx.doi.org/10.1016/j.triboint.2009.09.011]
[30]
Tjong, S.C.; Tam, K.F. Mechanical and thermal expansion behavior of hipped aluminum-TiB2 composites. Mater. Chem. Phys., 2006, 97, 91-97.
[http://dx.doi.org/10.1016/j.matchemphys.2005.07.075]
[31]
Harrigan, W.C. Commercial processing of metal matrix composites. J. Mater. Sci. Eng. A, 1998, 244, 75-79.
[http://dx.doi.org/10.1016/S0921-5093(97)00828-9]
[32]
Akhlaghi, F.; Lajevardi, A.; Maghanaki, H.M. Effects of casting temperature on the microstructure and wear resistance of compocast A356/SiCp composites: A comparison between SS and SL routes. J. Mater. Process. Technol., 2004, 155-156, 1874-1880.
[http://dx.doi.org/10.1016/j.jmatprotec.2004.04.328]
[33]
Rosso, M. Ceramic and metal matrix composites: Routes and properties. J. Mater. Process. Technol., 2006, 175, 364-375.
[http://dx.doi.org/10.1016/j.jmatprotec.2005.04.038]
[34]
Reihani, S.S. Processing of squeeze cast Al6061–30vol% SiC composites and their characterization. Mater. Des., 2006, 27, 216-222.
[http://dx.doi.org/10.1016/j.matdes.2004.10.016]
[35]
Estrada-Guel, I.; Carreño-Gallardo, C.; Mendoza-Ruiz, D.C.; Miki-Yoshida, M.; Rocha-Rangel, E.; Martínez-Sánchez, R. Graphite nanoparticle dispersion in 7075 aluminum alloy by means of mechanical alloying. J. Alloys Compd., 2009, 483, 173-177.
[http://dx.doi.org/10.1016/j.jallcom.2008.07.190]
[36]
Jha, A.K.; Prasad, S.V.; Upadhyaya, G.S. Dry sliding wear of sintered 6061 aluminium alloy-graphite particle composites. Tribol. Int., 1989, 22, 321-327.
[http://dx.doi.org/10.1016/0301-679X(89)90147-3]
[37]
Kerti, I.; Toptan, F. Microstructural variations in cast B4C-reinforced aluminium matrix composites (AMCs). Mater. Lett., 2008, 62, 1215-1218.
[http://dx.doi.org/10.1016/j.matlet.2007.08.015]
[38]
Purohit, R.; Qureshi, M.M.U.; Rana, R.S. The effect of hot forging and heat treatment on wear properties of Al6061-Al2O3 nano composites. Mater. Today, 2017, 4, 4042-4048.
[39]
Du, Z.; Chen, G.; Han, F.; Cao, G.; Liu, J.; Li, H.; Zhang, X. Homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging. Trans. Nonferrous Met. Soc. China, 2011, 21, 2384-2390.
[http://dx.doi.org/10.1016/S1003-6326(11)61024-8]
[40]
Elmadagli, M.; Perry, T.; Alpas, A.T. A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear, 2007, 262, 79-92.
[http://dx.doi.org/10.1016/j.wear.2006.03.043]
[41]
Badekas, H.; Koutsomichalis, A.; Panagopoulos, C. The influence of excimer laser treatment on an aluminium alloy surface. Surf. Coat. Tech., 1988, 34, 365-371.
[http://dx.doi.org/10.1016/0257-8972(88)90094-1]
[42]
Panagopoulos, C.N.; Georgiou, E.P. Surface mechanical behaviour of composite Ni–P–fly ash/zincate coated aluminium alloy. Appl. Surf. Sci., 2009, 255, 6499-6503.
[http://dx.doi.org/10.1016/j.apsusc.2009.02.026]
[43]
Meyer-Rodenbeck, G.; Hurd, T.; Ball, A. On the abrasive-corrosive wear of aluminium alloys. Wear, 1992, 154, 305-317.
[http://dx.doi.org/10.1016/0043-1648(92)90161-Z]
[44]
Gupta, M.K.; Sood, P.K. Optimization of machining parameters for turning AISI 4340 steel using Taguchi based grey relational analysis. Indian J. Eng. Mater. Sci., 2015, 22, 679-685.
[45]
Rajkumar, D.; Ranjithkumar, P.; Narayanan, C.S. Optimization of machining parameters on microdrilling of CFRP composites by Taguchi based desirability function analysis. Indian J. Eng. Mater. Sci., 2017, 24, 331-338.
[46]
Nataraj, M.; Balasubramanian, K. Experimental Investigations on machinability measures of LM6. J. Sci. Ind. Res. (India), 2018, 77, 318-324.
[47]
Prakash, J.; Ghosh, S.K.; Sathiyamoorthy, D.; Venugopalan, R.; Paul, B. Taguchi method optimization of parameters for growth of nano dimensional SiC wires by chemical vapor deposition technique. Curr. Nanosci., 2012, 8, 161-169.
[http://dx.doi.org/10.2174/1573413711208010161]
[48]
Moustafa, S.F.; Soliman, F.A. Wear resistance of δ-type alumina fibre reinforced Al-4% Cu matrix composite. Tribol. Lett., 1997, 3, 311-315.
[http://dx.doi.org/10.1023/A:1019166129670]
[49]
Liu, H.N.; Ogi, K. Dry sliding wear of an Al2O3 continuous fibre reinforced Al-Cu alloy against steel counter face. J. Mater. Sci., 1999, 34, 5593-5599.
[http://dx.doi.org/10.1023/A:1004789201574]
[50]
Singh, R.; Rai, R.N. Characterization of B4C-composite-reinforced aluminum alloy composites. AIP Conf. Proc., 2018, 1943, 020073.
[http://dx.doi.org/10.1063/1.5029649]
[51]
Hariprasad, T.; Varatharajan, K.; Ravi, S. Wear characteristics of B4C and Al2O3 reinforced with Al 5083 metal matrix based hybrid composite. Procedia Eng., 2014, 97, 925-929.
[http://dx.doi.org/10.1016/j.proeng.2014.12.368]
[52]
Zhang, Z.; Topping, T.; Li, Y.; Vogt, R.; Zhou, Y.; Haines, C.; Paras, J.; Kapoor, D.; Schoenung, J.M.; Lavernia, E.J. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr. Mater., 2011, 65, 652-655.
[http://dx.doi.org/10.1016/j.scriptamat.2011.06.037]
[53]
Alizadeh, A.; Abdollahi, A.; Biukani, H. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C). J. Alloys Compd., 2015, 650, 783-793.
[http://dx.doi.org/10.1016/j.jallcom.2015.07.214]
[54]
Zhao, Q.; Liang, Y.; Zhang, Z.; Li, X.; Ren, L. Microstructure and dry-sliding wear behavior of B4C ceramic particulate reinforced Al 5083 matrix composite. Metals (Basel), 2016, 6, 227-250.
[http://dx.doi.org/10.3390/met6090227]
[55]
Mevada, J.R. A comparative experimental investigation on process parameters using molybdenum, brass and zinc-coated wires in wire cut EDM. JSIR, 2013, 4, 1398.
[56]
Singh, P.N.; Raghukandan, K.; Pai, B.C. Optimization by grey relational analysis of EDM parameters on machining Al-10%SiCp composite. J. Mater. Process. Technol., 2004, 155-156, 1658-1661.
[http://dx.doi.org/10.1016/j.jmatprotec.2004.04.322]
[57]
Bolboacă, S.D.; Jäntschi, L. Design of experiments: Useful orthogonal arrays for number of experiments from 4 to 16. Entropy (Basel), 2007, 9, 198-232.
[http://dx.doi.org/10.3390/e9040198]
[58]
Shadab, M.; Singh, R.; Rai, R.N. Multi-objective optimization of wire electrical discharge machining process parameters for Al5083/7%B4C composite using metaheuristic techniques. Arab. J. Sci. Eng., 2018, 44, 591-601.
[http://dx.doi.org/10.1007/s13369-018-3491-9]
[59]
Park, S.H. Robust Design and Analysis for Quality Engineering; Chapman & Hall, 1996.
[60]
Gaitonde, V.N.; Karnik, S.R.; Paulo Davim, J. Computational Methods and Optimization in Machining of Metal Matrix Composites. In: Machining of Metal Matrix Composites; Davim, J., Ed.; Springer: London, 2012; pp. 143-162.
[http://dx.doi.org/10.1007/978-0-85729-938-3_7]
[61]
Karabulut, Ş.; Karakoç, H. Investigation of surface roughness in the milling of Al7075 and open-cell SiC foam composite and optimization of machining parameters. Neural Comput. Appl., 2017, 28, 313-327.
[http://dx.doi.org/10.1007/s00521-015-2058-x]
[62]
Kuram, E.; Ozcelik, B. Multi-objective optimization using Taguchi based grey relational analysis for micromilling of Al7075 material with ball nose end mill. Measurement, 2013, 46, 1849-1864.
[http://dx.doi.org/10.1016/j.measurement.2013.02.002]
[63]
Sayuti, M.; Sarhan, A.A.D.; Fadzil, M.; Hamdi, M. Enhancement and verification of a machined surface quality for glass milling operation- using CBN grinding tool-Taguchi approach. Int. J. Adv. Manuf. Technol., 2012, 60, 939-950.
[http://dx.doi.org/10.1007/s00170-011-3657-z]
[64]
Habib, S.S. Study of the parameters in electrical discharge machining through response surface methodology approach. Appl. Math. Model., 2009, 33, 4397-4407.
[http://dx.doi.org/10.1016/j.apm.2009.03.021]
[65]
Gangil, M.; Pradhan, M.K. Modeling and optimization of electrical discharge machining process using RSM: A review. Mater. Today, 2017, 4, 1752-1761.
[66]
Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev., 2000, 42, 599-653.
[http://dx.doi.org/10.1137/S0036144500371907]
[67]
Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions (with discussion). J. Roy. Statist. Soc. Ser. B Metho., 1951, 13, 1-38.
[68]
Cevheroğlu Çıra, S.; Dağ, A.; Karakuş, A. Application of response surface methodology and central composite inscribed design for modeling and optimization of marble surface quality. Adv. Mater. Sci. Eng., 2016, 2016, 2349476
[http://dx.doi.org/10.1155/2016/2349476]
[69]
Lin, Y.; Huang, J.; Wei, J.; Liao, X.; Xiao, Z. Modeling and optimization of high-grade compacted graphite iron milling force and surface roughness via response surface methodology. Aust. J. Mech. Eng., 2018, 16, 50-57.
[http://dx.doi.org/10.1080/14484846.2017.1296531]
[70]
Zarepour, H.; Tehrani, A.F.; Karimi, D.; Amini, S. Statistical analysis on electrode wear in EDM of tool steel DIN 1.2714 used in forging dies. J. Mater. Process. Technol., 2007, 187, 711-714.
[http://dx.doi.org/10.1016/j.jmatprotec.2006.11.202]
[71]
Luis, C.J.; Puertas, I.; Villa, G. Material removal rate and electrode wear study on the EDM of silicon carbide. J. Mater. Process. Technol., 2005, 164-165, 889-896.
[http://dx.doi.org/10.1016/j.jmatprotec.2005.02.045]
[72]
El-Taweel, T.A. Multi-response optimization of EDM with Al-Cu Si-TiC P/M composite electrode. Int. J. Adv. Manuf. Technol., 2008, 44, 100-113.
[http://dx.doi.org/10.1007/s00170-008-1825-6]
[73]
Faber, M.O.; Ferreira-Leitão, V.S. Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production. Bioresour. Technol., 2016, 219, 365-370.
[http://dx.doi.org/10.1016/j.biortech.2016.07.141 PMID: 27501033]
[74]
Maji, K.; Pratihar, D.K. Modeling of electrical discharge machining process using conventional regression analysis and genetic algorithms. J. Mater. Eng. Perform., 2011, 2, 1121-1127.
[http://dx.doi.org/10.1007/s11665-010-9754-6]
[75]
Gopalsamy, B.M.; Mondal, B.; Ghosh, S. Taguchi method and ANOVA: An approach for process parameters optimization of hard machining while machining hardened steel. J. Sci. Ind. Res. (India), 2009, 68, 686-695.
[76]
Kim, H.Y. Statistical notes for clinical researchers: Two-way analysis of variance (ANOVA)-exploring possible interaction between factors. Restor. Dent. Endod, 2014, 39(2), 143-147.
[http://dx.doi.org/10.5395/rde.2014.39.2.143 PMID: 24790929]
[77]
Ramasamy, S.; Gould, J.; Workman, D. Design of experiments study to examine the effect of polarity on stud welding. Weld. J., 2002, 81, 19s-26s.
[78]
Kumar, B.A.; Murugan, N.; Dinaharan, I. Dry sliding wear behavior of stir cast AA6061-T6/AlNp composite. Trans. Nonferrous Met. Soc. China, 2014, 24, 2785-2795.
[http://dx.doi.org/10.1016/S1003-6326(14)63410-5]
[79]
Pramanik, A. Effects of reinforcement on wear resistance of aluminum matrix composites. Trans. Nonferrous Met. Soc. China, 2016, 24, 348-358.
[http://dx.doi.org/10.1016/S1003-6326(16)64125-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy