Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

New Frontiers in the Therapeutic Approach of Patients with Cardiovascular and Endocrine Diseases

Author(s): ">Dario Grande, Paola Terlizzese, ">Margherita I. Gioia, ">Giuseppe Parisi, ">Vito A. Giagulli, ">Vincenzo Triggiani and Massimo Iacoviello*

Volume 19, Issue 5, 2019

Page: [605 - 621] Pages: 17

DOI: 10.2174/1871530319666190101151542

Price: $65

Abstract

Background and Objective: Cardiovascular disease is the most important cause of morbidity and mortality worldwide, with a significant economic burden, which is expected to increase in the next years. Alongside the management of cardiac manifestations and major risk factors for atherosclerosis, great attention has been paid to the role of comorbidities in initiating and worsening cardiac conditions.

Discussion: The cardiovascular impact of a broad spectrum of endocrine disorders has been evaluated, with particular regard to their effects on cardiac function and cardiovascular prognosis in affected patients. Among the different endocrine conditions considered, the association between subclinical hypothyroidism and cardiovascular events is still uncertain. A number of observational studies have linked subclinical hypothyroidism (in particular severe elevation of TSH levels) with incident cardiovascular disease and poor prognosis, however thyroid replacement therapy is still controversial, especially in the elderly, due to the lack of evidence coming from randomized controlled trials. With regards to testosterone deficiency, even though it has been associated with metabolic abnormalities and poor prognosis in patients affected by cardiovascular diseases, the cardiac safety of replacement therapy has still to be completely clarified. Similarly, growth hormone deficiency showed detrimental effects on cardiovascular events and risk factors which seem to be reverted by replacement therapy, even if unequivocal evidence from randomized clinical trials is still lacking Another relevant chapter in cardiovascular disease management is about the cardiovascular outcomes of diabetes medical treatments. In recent years, a growing interest has been developed around the cardiovascular safety of antidiabetic medications which has led to a great number of publications addressing this issue for the different classes of antidiabetic drugs. Interestingly, the recently approved classes, i.e. incretins and SGLT-2 inhibitors, have additionally demonstrated a protective effect against major cardiovascular events, shedding new light on the management of diabetes in patients affected by cardiovascular disease.

Conclusion: Important controversies still exist regarding the cardiac implications of the therapies adopted in endocrine diseases. Owing the large prevalence of these conditions, particularly in the cardiovascular population, further research is awaited in order to clarify the potential advantage and the possible cardiac risk related to treatment of the endocrine comorbidities.

Keywords: Comorbidities, cardiovascular disease, diabetes mellitus, hypothyroidism, testosterone deficiency, growth hormone deficiency.

Graphical Abstract
[1]
Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; de Ferranti, S.D.; Ferguson, J.F.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Lutsey, P.L.; Mackey, J.S.; Matchar, D.B.; Matsushita, K.; Mussolino, M.E.; Nasir, K.; O’Flaherty, M.; Palaniappan, L.P.; Pandey, A.; Pandey, D.K.; Reeves, M.J.; Ritchey, M.D.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sampson, U.K.A.; Satou, G.M.; Shah, S.H.; Spartano, N.L.; Tirschwell, D.L.; Tsao, C.W.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.; Alger, H.M.; Wong, S.S.; Muntner, P. American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics-2018 update: A report from the american heart association. Circulation, 2018, 137(12), e67-e492.
[2]
Jabbar, A.; Pingitore, A.; Pearce, S.H.S.; Zaman, A.; Iervasi, G.; Razvi, S. Thyroid hormones and cardiovascular disease. Nat. Rev. Cardiol., 2017, 14(1), 39-55.
[3]
Klein, I.; Ojamaa, K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med., 2001, 344(7), 501-509.
[4]
Epstein, F.H.; Brent, G.A. The molecular basis of thyroid hormone action. N. Engl. J. Med., 1994, 331(13), 847-853.
[5]
Cheng, S.Y.; Leonard, J.L.; Davis, P.J. Molecular aspects of thyroid hormone actions. Endocr. Rev., 2010, 31(2), 139-170.
[6]
He, H.; Giordano, F.J.; Hilal-Dandan, R.; Choi, D.J.; Rockman, H.A.; McDonough, P.M.; Bluhm, W.F.; Meyer, M.; Sayen, M.R.; Swanson, E.; Dillmann, W.H. Overexpression of the rat sarcoplasmic reticulum ca2+ atpase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J. Clin. Invest., 1997, 100(2), 380-389.
[7]
Holt, E.; Sjaastad, I.; Lunde, P.K.; Christensen, G.; Sejersted, O.M. Thyroid hormone control of contraction and the ca(2+)-atpase/phospholamban complex in adult rat ventricular myocytes. J. Mol. Cell. Cardiol., 1999, 31(3), 645-656.
[8]
Kaasik, A.; Paju, K.; Vetter, R.; Seppet, E.K. Thyroid hormones increase the contractility but suppress the effects of beta-adrenergic agonist by decreasing phospholamban expression in rat atria. Cardiovasc. Res., 1997, 35(1), 106-112.
[9]
Hoit, B.D.; Khoury, S.F.; Shao, Y.; Gabel, M.; Liggett, S.B.; Walsh, R.A. Effects of thyroid hormone on cardiac beta-adrenergic responsiveness in conscious baboons. Circulation, 1997, 96(2), 592-598.
[10]
Ojamaa, K.; Klemperer, J.D.; Klein, I. Acute effects of thyroid hormone on vascular smooth muscle. Thyroid, 1996, 6(5), 505-512.
[11]
Kinugawa, K.; Minobe, W.A.; Wood, W.M.; Ridgway, E.C.; Baxter, J.D.; Ribeiro, R.C.; Tawadrous, M.F.; Lowes, B.A.; Long, C.S.; Bristow, M.R. Signaling pathways responsible for fetal gene induction in the failing human heart: Evidence for altered thyroid hormone receptor gene expression. Circulation, 2001, 103(8), 1089-1094.
[12]
Mai, W.; Janier, M.F.; Allioli, N.; Quignodon, L.; Chuzel, T.; Flamant, F.; Samarut, J. Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc. Natl. Acad. Sci. USA, 2004, 101(28), 10332-10337.
[13]
Fazio, S.; Palmieri, E.A.; Lombardi, G.; Biondi, B. Effects of thyroid hormone on the cardiovascular system. Recent Prog. Horm. Res., 2004, 59, 31-50.
[14]
Biondi, B.; Fazio, S.; Palmieri, E.A.; Carella, C.; Panza, N.; Cittadini, A.; Bonè, F.; Lombardi, G.; Saccà, L. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J. Clin. Endocrinol. Metab., 1999, 84(6), 2064-2067.
[15]
Monzani, F.; Di Bello, V.; Caraccio, N.; Bertini, A.; Giorgi, D.; Giusti, C.; Ferrannini, E. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: A double blind, placebo-controlled study. J. Clin. Endocrinol. Metab., 2001, 86(3), 1110-1115.
[16]
Brenta, G.; Mutti, L.A.; Schnitman, M.; Fretes, O.; Perrone, A.; Matute, M.L. Assessment of left ventricular diastolic function by radionuclide ventriculography at rest and exercise in subclinical hypothyroidism, and its response to l-thyroxine therapy. Am. J. Cardiol., 2003, 91(11), 1327-1330.
[17]
Biondi, B.; Palmieri, E.A.; Lombardi, G.; Fazio, S. Effects of subclinical thyroid dysfunction on the heart. Ann. Intern. Med., 2002, 137(11), 904-914.
[18]
Danzi, S.; Klein, I. Thyroid hormone and blood pressure regulation. Curr. Hypertens. Rep., 2003, 5(6), 513-520.
[19]
Iqbal, A.; Figenschau, Y.; Jorde, R. Blood pressure in relation to serum thyrotropin: The tromsø study. J. Hum. Hypertens., 2006, 20(12), 932-936.
[20]
Cooper, D.S.; Biondi, B. Subclinical thyroid disease. Lancet, 2012, 379(9821), 1142-1154.
[21]
Razvi, S.; Weaver, J.U.; Vanderpump, M.P.; Pearce, S.H.S. The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: Reanalysis of the whickham survey cohort. J. Clin. Endocrinol. Metab., 2010, 95(4), 1734-1740.
[22]
Obuobie, K.; Smith, J.; Evans, L.M.; John, R.; Davies, J.S.; Lazarus, J.H. Increased central arterial stiffness in hypothyroidism. J. Clin. Endocrinol. Metab., 2002, 87(10), 4662-4666.
[23]
Nagasaki, T.; Inaba, M.; Kumeda, Y.; Hiura, Y.; Shirakawa, K.; Yamada, S.; Henmi, Y.; Ishimura, E.; Nishizawa, Y. Increased pulse wave velocity in subclinical hypothyroidism. J. Clin. Endocrinol. Metab., 2006, 91(1), 154-158.
[24]
Lekakis, J.; Papamichael, C.; Alevizaki, M.; Piperingos, G.; Marafelia, P.; Mantzos, J.; Stamatelopoulos, S.; Koutras, D.A. Flow-mediated, endothelium-dependent vasodilation is impaired in subjects with hypothyroidism, borderline hypothyroidism, and high-normal serum thyrotropin (tsh) values. Thyroid, 1997, 7(3), 411-414.
[25]
Taddei, S.; Caraccio, N.; Virdis, A.; Dardano, A.; Versari, D.; Ghiadoni, L.; Salvetti, A.; Ferrannini, E.; Monzani, F. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J. Clin. Endocrinol. Metab., 2003, 88(8), 3731-3737.
[26]
Ineck, B.A.; Ng, T.M. Effects of subclinical hypothyroidism and its treatment on serum lipids. Ann. Pharmacother., 2003, 37(5), 725-730.
[27]
Hueston, W.J.; Pearson, W.S. Subclinical hypothyroidism and the risk of hypercholesterolemia. Ann. Fam. Med., 2004, 2(4), 351-355.
[28]
Walsh, J.P.; Bremner, A.P.; Bulsara, M.K.; O’Leary, P.; Leedman, P.J.; Feddema, P.; Michelangeli, V. Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch. Intern. Med., 2005, 165(21), 2467.
[29]
Razvi, S.; Shakoor, A.; Vanderpump, M.; Weaver, J.U.; Pearce, S.H.S. The influence of age on the relationship between subclinical hypothyroidism and ischemic heart disease: A metaanalysis. J. Clin. Endocrinol. Metab., 2008, 93(8), 2998-3007.
[30]
McQuade, C.; Skugor, M.; Brennan, D.M.; Hoar, B.; Stevenson, C.; Hoogwerf, B.J. Hypothyroidism and moderate subclinical hypothyroidism are associated with increased all-cause mortality independent of coronary heart disease risk factors: A precis database study. Thyroid, 2011, 21(8), 837-843.
[31]
Rodondi, N.; Newman, A.B.; Vittinghoff, E.; de Rekeneire, N.; Satterfield, S.; Harris, T.B.; Bauer, D.C. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch. Intern. Med., 2005, 165(21), 2460-2466.
[32]
Boekholdt, S.M.; Titan, S.M.; Wiersinga, W.M.; Chatterjee, K.; Basart, D.C.G.; Luben, R.; Wareham, N.J.; Khaw, K-T. Initial thyroid status and cardiovascular risk factors: The epic-norfolk prospective population study. Clin. Endocrinol. (Oxf.), 2010, 72(3), 404-410.
[33]
Rodondi, N.; den Elzen, W.P.J.; Bauer, D.C.; Cappola, A.R.; Razvi, S.; Walsh, J.P.; Åsvold, B.O.; Iervasi, G.; Imaizumi, M.; Collet, T-H.; Bremner, A.; Maisonneuve, P.; Sgarbi, J.A.; Khaw, K-T.; Vanderpump, M.P.J.; Newman, A.B.; Cornuz, J.; Franklyn, J.A.; Westendorp, R.G.J.; Vittinghoff, E.; Gussekloo, J. Thyroid Studies Collaboration, for the. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA, 2010, 304(12), 1365-1374.
[34]
Waring, A.C.; Harrison, S.; Samuels, M.H.; Ensrud, K.E.; LeBlanc, E.S.; Hoffman, A.R.; Orwoll, E.; Fink, H.A.; Barrett-Connor, E.; Bauer, D.C. Osteoporotic fractures in men (mros) study. thyroid function and mortality in older men: A prospective study. J. Clin. Endocrinol. Metab., 2012, 97(3), 862-870.
[35]
Hyland, K.A.; Arnold, A.M.; Lee, J.S.; Cappola, A.R. Persistent subclinical hypothyroidism and cardiovascular risk in the elderly: The cardiovascular health study. J. Clin. Endocrinol. Metab., 2013, 98(2), 533-540.
[36]
Friberg, L.; Drvota, V.; Bjelak, A.H.; Eggertsen, G.; Ahnve, S. association between increased levels of reverse triiodothyronine and mortality after acute myocardial infarction. Am. J. Med., 2001, 111(9), 699-703.
[37]
Lee, Y.; Lim, Y-H.; Shin, J-H.; Park, J.; Shin, J. Impact of subclinical hypothyroidism on clinical outcomes following percutaneous coronary intervention. Int. J. Cardiol., 2018, 253, 155-160.
[38]
Triggiani, V.; Iacoviello, M.; Monzani, F.; Puzzovivo, A.; Guida, P.; Forleo, C.; Ciccone, M.M.; Catanzaro, R.; Tafaro, E.; Licchelli, B.; Giagulli, V.A.; Guastamacchia, E.; Favale, S. Incidence and prevalence of hypothyroidism in patients affected by chronic heart failure: Role of amiodarone. Endocr. Metab. Immune Disord. Drug Targets, 2012, 12(1), 86-94.
[39]
Yazici, M.; Gorgulu, S.; Sertbas, Y.; Erbilen, E.; Albayrak, S.; Yildiz, O.; Uyan, C. Effects of thyroxin therapy on cardiac function in patients with subclinical hypothyroidism: Index of myocardial performance in the evaluation of left ventricular function. Int. J. Cardiol., 2004, 95(2-3), 135-143.
[40]
Triggiani, V.; Iacoviello, M. Thyroid disorders in chronic heart failure: from prognostic set-up to therapeutic management. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 22-37.
[41]
Triggiani, V.; Angelo Giagulli, V.; De Pergola, G.; Licchelli, B.; Guastamacchia, E.; Iacoviello, M. Mechanisms explaining the influence of subclinical hypothyroidism on the onset and progression of chronic heart failure. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(1), 2-7.
[42]
Rodondi, N.; Bauer, D.C.; Cappola, A.R.; Cornuz, J.; Robbins, J.; Fried, L.P.; Ladenson, P.W.; Vittinghoff, E.; Gottdiener, J.S.; Newman, A.B. Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. the cardiovascular health study. J. Am. Coll. Cardiol., 2008, 52(14), 1152-1159.
[43]
Opasich, C.; Pacini, F.; Ambrosino, N.; Riccardi, P.G.; Febo, O.; Ferrari, R.; Cobelli, F.; Tavazzi, L. Sick euthyroid syndrome in patients with moderate-to-severe chronic heart failure. Eur. Heart J., 1996, 17(12), 1860-1866.
[44]
Pingitore, A.; Landi, P.; Taddei, M.C.; Ripoli, A.; Abbate, A.L.; Iervasi, G. Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am. J. Med., 2005, 118(2), 132-136.
[45]
Passino, C.; Pingitore, A.; Landi, P.; Fontana, M.; Zyw, L.; Clerico, A.; Emdin, M.; Iervasi, G. Prognostic value of combined measurement of brain natriuretic peptide and triiodothyronine in heart failure. J. Card. Fail., 2009, 15(1), 35-40.
[46]
Iervasi, G.; Molinaro, S.; Landi, P.; Taddei, M.C.; Galli, E.; Mariani, F.; L’Abbate, A.; Pingitore, A. Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch. Intern. Med., 2007, 167(14), 1526-1532.
[47]
Iacoviello, M.; Guida, P.; Guastamacchia, E.; Triggiani, V.; Forleo, C.; Catanzaro, R.; Cicala, M.; Basile, M.; Sorrentino, S.; Favale, S. Prognostic role of sub-clinical hypothyroidism in chronic heart failure outpatients. Curr. Pharm. Des., 2008, 14(26), 2686-2692.
[48]
Gencer, B.; Collet, T-H.; Virgini, V.; Bauer, D.C.; Gussekloo, J.; Cappola, A.R.; Nanchen, D.; den Elzen, W.P.J.; Balmer, P.; Luben, R.N.; Iacoviello, M.; Triggiani, V.; Cornuz, J.; Newman, A.B.; Khaw, K-T.; Jukema, J.W.; Westendorp, R.G.J.; Vittinghoff, E.; Aujesky, D.; Rodondi, N. Thyroid studies collaboration. subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation, 2012, 126(9), 1040-1049.
[49]
Mitchell, J.E.; Hellkamp, A.S.; Mark, D.B.; Anderson, J.; Johnson, G.W.; Poole, J.E.; Lee, K.L.; Bardy, G.H. Thyroid function in heart failure and impact on mortality. JACC Heart Fail., 2013, 1(1), 48-55.
[50]
Chen, S.; Shauer, A.; Zwas, D.R.; Lotan, C.; Keren, A.; Gotsman, I. The Effect of Thyroid Function on Clinical Outcome in Patients with Heart Failure. Eur. J. Heart Fail., 2014, 16(2), 217-226.
[51]
Ning, N.; Gao, D.; Triggiani, V.; Iacoviello, M.; Mitchell, J.E.; Ma, R.; Zhang, Y.; Kou, H. Prognostic role of hypothyroidism in heart failure: A meta-analysis. Medicine (Baltimore), 2015, 94(30)e1159
[52]
Caraccio, N.; Ferrannini, E.; Monzani, F. Lipoprotein profile in subclinical hypothyroidism: Response to levothyroxine replacement, a randomized placebo-controlled study. J. Clin. Endocrinol. Metab., 2002, 87(4), 1533-1538.
[53]
Monzani, F.; Caraccio, N.; Kozàkowà, M.; Dardano, A.; Vittone, F.; Virdis, A.; Taddei, S.; Palombo, C.; Ferrannini, E. Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: A double-blind, placebo- controlled study. J. Clin. Endocrinol. Metab., 2004, 89(5), 2099-2106.
[54]
Razvi, S.; Ingoe, L.; Keeka, G.; Oates, C.; McMillan, C.; Weaver, J.U. The beneficial effect of l -thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J. Clin. Endocrinol. Metab., 2007, 92(5), 1715-1723.
[55]
Jaeschke, R.; Guyatt, G.; Gerstein, H.; Patterson, C.; Molloy, W.; Cook, D.; Harper, S.; Griffith, L.; Carbotte, R. Does treatment with l-thyroxine influence health status in middle-aged and older adults with subclinical hypothyroidism? J. Gen. Intern. Med., 1996, 11(12), 744-749.
[56]
Kong, W.M.; Sheikh, M.H.; Lumb, P.J.; Naoumova, R.P.; Freedman, D.B.; Crook, M.; Doré, C.J.; Finer, N.; Naoumova, P. A 6-month randomized trial of thyroxine treatment in women with mild subclinical hypothyroidism. Am. J. Med., 2002, 112(5), 348-354.
[57]
Danese, M.D.; Ladenson, P.W.; Meinert, C.L.; Powe, N.R. Clinical review 115: Effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: A quantitative review of the literature. J. Clin. Endocrinol. Metab., 2000, 85(9), 2993-3001.
[58]
Nagasaki, T.; Inaba, M.; Yamada, S.; Shirakawa, K.; Nagata, Y.; Kumeda, Y.; Hiura, Y.; Tahara, H.; Ishimura, E.; Nishizawa, Y. Decrease of brachial-ankle pulse wave velocity in female subclinical hypothyroid patients during normalization of thyroid function: A double-blind, placebo-controlled study. Eur. J. Endocrinol., 2009, 160(3), 409-415.
[59]
Ripoli, A.; Pingitore, A.; Favilli, B.; Bottoni, A.; Turchi, S.; Osman, N.F.; De Marchi, D.; Lombardi, M.; L’Abbate, A.; Iervasi, G. Does subclinical hypothyroidism affect cardiac pump performance? J. Am. Coll. Cardiol., 2005, 45(3), 439-445.
[60]
Razvi, S.; Weaver, J.U.; Butler, T.J.; Pearce, S.H.S. Levothyroxine treatment of subclinical hypothyroidism, fatal and nonfatal cardiovascular events, and mortality. Arch. Intern. Med., 2012, 172(10), 811-817.
[61]
Stott, D.J.; Rodondi, N.; Kearney, P.M.; Ford, I.; Westendorp, R.G.J.; Mooijaart, S.P.; Sattar, N.; Aubert, C.E.; Aujesky, D.; Bauer, D.C.; Baumgartner, C.; Blum, M.R.; Browne, J.P.; Byrne, S.; Collet, T-H.; Dekkers, O.M.; den Elzen, W.P.J.; Du Puy, R.S.; Ellis, G.; Feller, M.; Floriani, C.; Hendry, K.; Hurley, C.; Jukema, J.W.; Kean, S.; Kelly, M.; Krebs, D.; Langhorne, P.; McCarthy, G.; McCarthy, V.; McConnachie, A.; McDade, M.; Messow, M.; O’Flynn, A.; O’Riordan, D.; Poortvliet, R.K.E.; Quinn, T.J.; Russell, A.; Sinnott, C.; Smit, J.W.A.; Van Dorland, H.A.; Walsh, K.A.; Walsh, E.K.; Watt, T.; Wilson, R.; Gussekloo, J. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N. Engl. J. Med., 2017, 376(26), 2534-2544.
[62]
Pearce, S.H.S.; Brabant, G.; Duntas, L.H.; Monzani, F.; Peeters, R.P.; Razvi, S.; Wemeau, J-L. 2013 ETA guideline: Management of subclinical hypothyroidism. Eur. Thyroid J., 2013, 2(4), 215-228.
[63]
Roelfsema, F.; Yang, R.J.; Veldhuis, J.D. Estradiol does not influence lipid measures and inflammatory markers in testosterone-clamped healthy men. J. Endocr. Soc., 2018, 2(8), 882-892.
[64]
Yang, J.; Wang, F.; Sun, W.; Dong, Y.; Li, M.; Fu, L. Testosterone replacement modulates cardiac metabolic remodeling after myocardial infarction by upregulating PPARα. PPAR Res., 2016, 20164518754
[65]
Bianchi, V.E. Testosterone, myocardial function, and mortality. Heart Fail. Rev., 2018, 23(5), 773-788.
[66]
Bidoggia, H.; Maciel, J.P.; Capalozza, N.; Mosca, S.; Blaksley, E.J.; Valverde, E.; Bertran, G.; Arini, P.; Biagetti, M.O.; Quinteiro, R.A. Sex differences on the electrocardiographic pattern of cardiac repolarization: Possible role of testosterone. Am. Heart J., 2000, 140(4), 678-683.
[67]
Handelsman, D.J. Global trends in testosterone prescribing, 2000-2011: Expanding the spectrum of prescription drug misuse. Med. J. Aust., 2013, 199(8), 548-551.
[68]
Bhasin, S.; Cunningham, G.R.; Hayes, F.J.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Montori, V.M. Task Force, Endocrine Society. Testosterone therapy in men with androgen deficiency syndromes: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab., 2010, 95(6), 2536-2559.
[69]
Giagulli, V.A.; Triggiani, V.; Corona, G.; Carbone, D.; Licchelli, B.; Tafaro, E.; Resta, F.; Sabbà, C.; Maggi, M.; Guastamacchia, E. Evidence-based medicine update on testosterone replacement therapy (trt) in male hypogonadism: Focus on new formulations. Curr. Pharm. Des., 2011, 17(15), 1500-1511.
[70]
Giagulli, V.A.; Kaufman, J.M.; Vermeulen, A. Pathogenesis of the decreased androgen levels in obese men. J. Clin. Endocrinol. Metab., 1994, 79(4), 997-1000.
[71]
Giagulli, V.A.; Carbone, M.D.; Ramunni, M.I.; Licchelli, B.; De Pergola, G.; Sabbà, C.; Guastamacchia, E.; Triggiani, V. Adding liraglutide to lifestyle changes, metformin and testosterone therapy boosts erectile function in diabetic obese men with overt hypogonadism. Andrology, 2015, 3(6), 1094-1103.
[72]
Harman, S.M.; Metter, E.J.; Tobin, J.D.; Pearson, J.; Blackman, M.R. Baltimore longitudinal study of aging. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J. Clin. Endocrinol. Metab., 2001, 86(2), 724-731.
[73]
Corona, G.; Monami, M.; Rastrelli, G.; Aversa, A.; Tishova, Y.; Saad, F.; Lenzi, A.; Forti, G.; Mannucci, E.; Maggi, M. Testosterone and metabolic syndrome: A meta-analysis study. J. Sex. Med., 2011, 8(1), 272-283.
[74]
Rao, P.M.; Kelly, D.M.; Jones, T.H. Testosterone and insulin resistance in the metabolic syndrome and T2DM in men. Nat. Rev. Endocrinol., 2013, 9(8), 479-493.
[75]
Deng, C.; Zhang, Z.; Li, H.; Bai, P.; Cao, X.; Dobs, A.S. Analysis of cardiovascular risk factors associated with serum testosterone levels according to the US 2011-2012 national health and nutrition examination survey. Aging Male, 2018, 22(2), 121-128.
[76]
Jones, T.H.; Arver, S.; Behre, H.M.; Buvat, J.; Meuleman, E.; Moncada, I.; Morales, A.M.; Volterrani, M.; Yellowlees, A.; Howell, J.D.; Channer, K.S. Times2 investigators. Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 Study). Diabetes Care, 2011, 34(4), 828-837.
[77]
Permpongkosol, S.; Tantirangsee, N.; Ratana-olarn, K. Treatment of 161 men with symptomatic late onset hypogonadism with long-acting parenteral testosterone undecanoate: Effects on body composition, lipids, and psychosexual complaints. J. Sex. Med., 2010, 7(11), 3765-3774.
[78]
Kalinchenko, S.Y.; Tishova, Y.A.; Mskhalaya, G.J.; Gooren, L.J. G.; Giltay, E.J.; Saad, F. Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: The doubleblinded placebo-controlled moscow study. Clin. Endocrinol.(Oxf)., 2010, 73(5), 602-612.
[79]
Corona, G.; Giagulli, V.A.; Maseroli, E.; Vignozzi, L.; Aversa, A.; Zitzmann, M.; Saad, F.; Mannucci, E.; Maggi, M. Testosterone supplementation and body composition: results from a meta-analysis of observational studies. J. Endocrinol. Invest., 2016, 39(9), 967-981.
[80]
Corona, G.; Giagulli, V.A.; Maseroli, E.; Vignozzi, L.; Aversa, A.; Zitzmann, M.; Saad, F.; Mannucci, E.; Maggi, M. Therapy of endocrine disease: Testosterone supplementation and body composition: Results from a meta-analysis study. Eur. J. Endocrinol., 2016, 174(3), R99-R116.
[81]
Hartgens, F.; Kuipers, H. Effects of androgenic-anabolic steroids in athletes. Sports Med., 2004, 34(8), 513-554.
[82]
Hackett, G.; Cole, N.; Bhartia, M.; Kennedy, D.; Raju, J.; Wilkinson, P. The blast study group. testosterone replacement therapy improves metabolic parameters in hypogonadal men with type 2 diabetes but not in men with coexisting depression: The blast study. J. Sex. Med., 2014, 11(3), 840-856.
[83]
Corona, G.; Rastrelli, G.; Morelli, A.; Vignozzi, L.; Mannucci, E.; Maggi, M. Hypogonadism and metabolic syndrome. J. Endocrinol. Invest., 34(7), 557-567.
[84]
Muraleedharan, V.; Jones, T.H. Testosterone and the metabolic syndrome. Ther. Adv. Endocrinol. Metab., 2010, 1(5), 207-223.
[85]
Muller, M.; van den Beld, A.W.; Bots, M.L.; Grobbee, D.E.; Lamberts, S.W.J.; van der Schouw, Y.T. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation, 2004, 109(17), 2074-2079.
[86]
English, K.M.; Mandour, O.; Steeds, R.P.; Diver, M.J.; Jones, T.H.; Channer, K.S. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. Eur. Heart J., 2000, 21(11), 890-894.
[87]
Rosano, G.M.C.; Sheiban, I.; Massaro, R.; Pagnotta, P.; Marazzi, G.; Vitale, C.; Mercuro, G.; Volterrani, M.; Aversa, A.; Fini, M. Low testosterone levels are associated with coronary artery disease in male patients with angina. Int. J. Impot. Res., 2007, 19(2), 176-182.
[88]
Corona, G.; Rastrelli, G.; Monami, M.; Guay, A.; Buvat, J.; Sforza, A.; Forti, G.; Mannucci, E.; Maggi, M. Hypogonadism as a risk factor for cardiovascular mortality in men: A meta-analytic study. Eur. J. Endocrinol., 2011, 165(5), 687-701.
[89]
Araujo, A.B.; Dixon, J.M.; Suarez, E.A.; Murad, M.H.; Guey, L.T.; Wittert, G.A. Clinical review: Endogenous testosterone and mortality in men: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab., 2011, 96(10), 3007-3019.
[90]
Ohlsson, C.; Barrett-Connor, E.; Bhasin, S.; Orwoll, E.; Labrie, F.; Karlsson, M.K.; Ljunggren, O.; Vandenput, L.; Mellström, D.; Tivesten, A. High serum testosterone is associated with reduced risk of cardiovascular events in elderly men. The MrOS (Osteoporotic fractures in men) study in sweden. J. Am. Coll. Cardiol., 2011, 58(16), 1674-1681.
[91]
Corona, G.; Maseroli, E.; Rastrelli, G.; Isidori, A.M.; Sforza, A.; Mannucci, E.; Maggi, M. Cardiovascular risk associated with testosterone-boosting medications: A systematic review and Meta-Analysis. Expert Opin. Drug Saf., 2014, 13(10), 1327-1351.
[92]
Webb, C.M.; McNeill, J.G.; Hayward, C.S.; de Zeigler, D.; Collins, P. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation, 1999, 100(16), 1690-1696.
[93]
Webb, C.M.; Elkington, A.G.; Kraidly, M.M.; Keenan, N.; Pennell, D.J.; Collins, P. Effects of oral testosterone treatment on myocardial perfusion and vascular function in men with low plasma testosterone and coronary heart disease. Am. J. Cardiol., 2008, 101(5), 618-624.
[94]
Budoff, M.J.; Ellenberg, S.S.; Lewis, C.E.; Mohler, E.R.; Wenger, N.K.; Bhasin, S.; Barrett-Connor, E.; Swerdloff, R.S.; Stephens-Shields, A.; Cauley, J.A.; Crandall, J.P.; Cunningham, G.R.; Ensrud, K.E.; Gill, T.M.; Matsumoto, A.M.; Molitch, M.E.; Nakanishi, R.; Nezarat, N.; Matsumoto, S.; Hou, X.; Basaria, S.; Diem, S.J.; Wang, C.; Cifelli, D.; Snyder, P.J. Testosterone treatment and coronary artery plaque volume in older men with low testosterone. JAMA, 2017, 317(7), 708-716.
[95]
Calof, O.M.; Singh, A.B.; Lee, M.L.; Kenny, A.M.; Urban, R.J.; Tenover, J.L.; Bhasin, S. Adverse events associated with testosterone replacement in middle-aged and older men: A meta-analysis of randomized, placebo-controlled trials. J. Gerontol. A Biol. Sci. Med. Sci., 2005, 60(11), 1451-1457.
[96]
Haddad, R.M.; Kennedy, C.C.; Caples, S.M.; Tracz, M.J.; Boloña, E.R.; Sideras, K.; Uraga, M.V.; Erwin, P.J.; Montori, V.M. Testosterone and cardiovascular risk in men: A systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin. Proc., 2007, 82(1), 29-39.
[97]
Fernández-Balsells, M.M.; Murad, M.H.; Lane, M.; Lampropulos, J.F.; Albuquerque, F.; Mullan, R.J.; Agrwal, N.; Elamin, M.B.; Gallegos-Orozco, J.F.; Wang, A.T.; Erwin, P.J.; Bhasin, S.; Montori, V.M. Adverse effects of testosterone therapy in adult men: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab., 2010, 95(6), 2560-2575.
[98]
Basaria, S.; Coviello, A.D.; Travison, T.G.; Storer, T.W.; Farwell, W.R.; Jette, A.M.; Eder, R.; Tennstedt, S.; Ulloor, J.; Zhang, A.; Choong, K.; Lakshman, K.M.; Mazer, N.A.; Miciek, R.; Krasnoff, J.; Elmi, A.; Knapp, P.E.; Brooks, B.; Appleman, E.; Aggarwal, S.; Bhasin, G.; Hede-Brierley, L.; Bhatia, A.; Collins, L.; LeBrasseur, N.; Fiore, L.D.; Bhasin, S. Adverse events associated with testosterone administration. N. Engl. J. Med., 2010, 363(2), 109-122.
[99]
Vigen, R.; O’Donnell, C.I.; Barón, A.E.; Grunwald, G.K.; Maddox, T.M.; Bradley, S.M.; Barqawi, A.; Woning, G.; Wierman, M.E.; Plomondon, M.E.; Rumsfeld, J.S.; Ho, P.M. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA, 2013, 310(17), 1829-1836.
[100]
Finkle, W.D.; Greenland, S.; Ridgeway, G.K.; Adams, J.L.; Frasco, M.A.; Cook, M.B.; Fraumeni, J.F.; Hoover, R.N. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One, 2014, 9(1)e85805
[101]
Shores, M.M.; Smith, N.L.; Forsberg, C.W.; Anawalt, B.D.; Matsumoto, A.M. Testosterone treatment and mortality in men with low testosterone levels. J. Clin. Endocrinol. Metab., 2012, 97(6), 2050-2058.
[102]
Corona, G.; Rastrelli, G.; Di Pasquale, G.; Sforza, A.; Mannucci, E.; Maggi, M. Testosterone and cardiovascular risk: Meta-analysis of interventional studies. J. Sex. Med., 2018, 15(6), 820-838.
[103]
Calogero, A.E.; Giagulli, V.A.; Mongioì, L.M.; Triggiani, V.; Radicioni, A.F.; Jannini, E.A.; Pasquali, D.; Klinefelter Italia, N. Group (KING). Klinefelter syndrome: Cardiovascular abnormalities and metabolic disorders. J. Endocrinol. Invest., 2017, 40(7), 705-712.
[104]
Jankowska, E.A.; Filippatos, G.; Ponikowska, B.; Borodulin-Nadzieja, L.; Anker, S.D.; Banasiak, W.; Poole-Wilson, P.A.; Ponikowski, P. Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. J. Card. Fail., 2009, 15(5), 442-450.
[105]
von Haehling, S.; Ebner, N.; dos Santos, M.R.; Springer, J.; Anker, S.D. Muscle wasting and cachexia in heart failure: Mechanisms and therapies. Nat. Rev. Cardiol., 2017, 14(6), 323-341.
[106]
Giagulli, V.A.; Guastamacchia, E.; De Pergola, G.; Iacoviello, M.; Triggiani, V. Testosterone deficiency in male: a risk factor for heart failure. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 92-99.
[107]
Pugh, P.J.; Jones, T.H.; Channer, K.S. Acute haemodynamic effects of testosterone in men with chronic heart failure. Eur. Heart J., 2003, 24(10), 909-915.
[108]
Pugh, P.J.; Jones, R.D.; West, J.N.; Jones, T.H.; Channer, K.S. Testosterone treatment for men with chronic heart failure. Heart, 2004, 90(4), 446-447.
[109]
Malkin, C.J.; Pugh, P.J.; West, J.N.; van Beek, E.J.R.; Jones, T.H.; Channer, K.S. Testosterone therapy in men with moderate severity heart failure: A double-blind randomized placebo controlled trial. Eur. Heart J., 2006, 27(1), 57-64.
[110]
Caminiti, G.; Volterrani, M.; Iellamo, F.; Marazzi, G.; Massaro, R.; Miceli, M.; Mammi, C.; Piepoli, M.; Fini, M.; Rosano, G.M.C. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure. J. Am. Coll. Cardiol., 2009, 54(10), 919-927.
[111]
Toma, M.; McAlister, F.A.; Coglianese, E.E.; Vidi, V.; Vasaiwala, S.; Bakal, J.A.; Armstrong, P.W.; Ezekowitz, J.A. Testosterone supplementation in heart failure: A meta-analysis. Circ Heart Fail, 2012, 5(3), 315-321.
[112]
Iellamo, F.; Volterrani, M.; Caminiti, G.; Karam, R.; Massaro, R.; Fini, M.; Collins, P.; Rosano, G.M.C. Testosterone therapy in women with chronic heart failure. J. Am. Coll. Cardiol., 2010, 56(16), 1310-1316.
[113]
Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V-P.; Jankowska, E.A.; Jessup, M.; Linde, C.; Nihoyannopoulos, P.; Parissis, J.T.; Pieske, B.; Riley, J.P.; Rosano, G.M.C.; Ruilope, L.M.; Ruschitzka, F.; Rutten, F.H.; van der Meer, P. Authors/task force members; document reviewers. 2016 esc guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail., 2016, 18(8), 891-975.
[114]
Mulhall, J.P.; Trost, L.W.; Brannigan, R.E.; Kurtz, E.G.; Redmon, J.B.; Chiles, K.A.; Lightner, D.J.; Miner, M.M.; Murad, M.H.; Nelson, C.J.; Platz, E.A.; Ramanathan, L.V.; Lewis, R.W. Evaluation and management of testosterone deficiency: AUA guideline. J. Urol., 2018, 200(2), 423-432.
[115]
Miner, M.M. Erectile dysfunction: A harbinger or consequence: does its detection lead to a window of curability? J. Androl., 2011, 32(2), 125-134.
[116]
Giagulli, V.A.; Moghetti, P.; Kaufman, J.M.; Guastamacchia, E.; Iacoviello, M.; Triggiani, V. Managing erectile dysfunction in heart failure. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 125-134.
[117]
Corona, G.; Rastrelli, G.; Di Pasquale, G.; Sforza, A.; Mannucci, E.; Maggi, M. Testosterone and cardiovascular risk: meta-analysis of interventional studies. J. Sex. Med., 2018, 15(6), 820-838.
[118]
Colao, A. The GH-IGF-I axis and the cardiovascular system: Clinical implications. Clin. Endocrinol. (Oxf.), 2008, 69(3), 347-358.
[119]
Isgaard, J.; Arcopinto, M.; Karason, K.; Cittadini, A. GH and the cardiovascular system: An update on a topic at heart. Endocrine, 2015, 48(1), 25-35.
[120]
Cittadini, A.; Marra, A.M.; Arcopinto, M.; Bobbio, E.; Salzano, A.; Sirico, D.; Napoli, R.; Colao, A.; Longobardi, S.; Baliga, R.R.; Bossone, E.; Saccà, L. Growth hormone replacement delays the progression of chronic heart failure combined with growth hormone deficiency. JACC Heart Fail., 2013, 1(4), 325-330.
[121]
D’Ercole, A.J.; Stiles, A.D.; Underwood, L.E. Tissue concentrations of somatomedin C: Further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc. Natl. Acad. Sci. USA, 1984, 81(3), 935-939.
[122]
McCallum, R.W.; Petrie, J.R.; Dominiczak, A.F.; Connell, J.M.C. Growth hormone deficiency and vascular risk. Clin. Endocrinol. (Oxf.), 2002, 57(1), 11-24.
[123]
Lee, S-D.; Huang, C-Y.; Shu, W-T.; Chen, T-H.; Lin, J.A.; Hsu, H-H.; Lin, C-S.; Liu, C-J.; Kuo, W-W.; Chen, L-M. Pro-inflammatory states and IGF-I level in ischemic heart disease with low or high serum iron. Clin. Chim. Acta, 2006, 370(1-2), 50-56.
[124]
Libby, P. Inflammation in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(9), 2045-2051.
[125]
Attallah, H.; Friedlander, A.L.; Hoffman, A.R. Visceral obesity, impaired glucose tolerance, metabolic syndrome, and growth hormone therapy. Growth Horm. IGF Res., 2006, 16, 62-67.
[126]
Savastano, S.; Di Somma, C.; Barrea, L.; Colao, A. The complex relationship between obesity and the somatropic axis: The long and winding road. Growth Horm. IGF Res., 2014, 24(6), 221-226.
[127]
Rosén, T.; Edén, S.; Larson, G.; Wilhelmsen, L.; Bengtsson, B.A. Cardiovascular risk factors in adult patients with growth hormone deficiency. Acta Endocrinol. (Copenh.), 1993, 129(3), 195-200.
[128]
Sverrisdóttir, Y.B.; Elam, M.; Caidahl, K.; Söderling, A-S.; Herlitz, H.; Johannsson, G. The effect of growth hormone (GH) replacement therapy on sympathetic nerve hyperactivity in hypopituitary adults: A double-blind, placebo-controlled, crossover, short-term trial followed by long-term open gh replacement in hypopituitary adults. J. Hypertens., 2003, 21(10), 1905-1914.
[129]
Böger, R.H. Nitric oxide and the mediation of the hemodynamic effects of growth hormone in humans. J. Endocrinol. Invest., 1999, 22(5)(Suppl.), 75-81.
[130]
Rosén, T.; Bengtsson, B.A. Premature mortality due to cardiovascular disease in hypopituitarism. Lancet (London, England), 1990, 336(8710), 285-288.
[131]
Bates, A.S.; Van’t Hoff, W.; Jones, P.J.; Clayton, R.N. the effect of hypopituitarism on life expectancy. J. Clin. Endocrinol. Metab., 1996, 81(3), 1169-1172.
[132]
Bülow, B.; Hagmar, L.; Mikoczy, Z.; Nordström, C. H.; Erfurth, E. M. Increased cerebrovascular mortality in patients with hypopituitarism. Clin. Endocrinol., (Oxf)., 1997, 46(1), 75-81.
[133]
Tomlinson, J.W.; Holden, N.; Hills, R.K.; Wheatley, K.; Clayton, R.N.; Bates, A.S.; Sheppard, M.C.; Stewart, P.M. Association between premature mortality and hypopituitarism. west midlands prospective hypopituitary study group. Lancet, (London, England), 2001, 357(9254), 425-431.
[134]
Svensson, J.; Bengtsson, B-Å.; Rosén, T.; Odén, A.; Johannsson, G. Malignant disease and cardiovascular morbidity in hypopituitary adults with or without growth hormone replacement therapy. J. Clin. Endocrinol. Metab., 2004, 89(7), 3306-3312.
[135]
Broglio, F.; Benso, A.; Gottero, C.; Vito, L.D.; Aimaretti, G.; Fubini, A.; Arvat, E.; Bobbio, M.; Ghigo, E. Patients with dilated cardiomyopathy show reduction of the somatotroph responsiveness to GHRH both alone and combined with arginine. Eur. J. Endocrinol., 2000, 142(2), 157-163.
[136]
Cittadini, A.; Saldamarco, L.; Marra, A.M.; Arcopinto, M.; Carlomagno, G.; Imbriaco, M.; Del Forno, D.; Vigorito, C.; Merola, B.; Oliviero, U.; Fazio, S.; Saccà, L. Growth hormone deficiency in patients with chronic heart failure and beneficial effects of its correction. J. Clin. Endocrinol. Metab., 2009, 94(9), 3329-3336.
[137]
Rosenkranz, S.; Gibbs, J.S.R.; Wachter, R.; De Marco, T.; Vonk-Noordegraaf, A.; Vachiéry, J-L. Left ventricular heart failure and pulmonary hypertension. Eur. Heart J., 2016, 37(12), 942-954.
[138]
Giustina, A.; Veldhuis, J.D. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr. Rev., 1998, 19(6), 717-797.
[139]
Yoshida, T.; Tabony, A.M.; Galvez, S.; Mitch, W.E.; Higashi, Y.; Sukhanov, S.; Delafontaine, P. Molecular mechanisms and signaling pathways of angiotensin ii-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int. J. Biochem. Cell Biol., 2013, 45(10), 2322-2332.
[140]
Colao, A.; Di Somma, C.; Cuocolo, A.; Filippella, M.; Rota, F.; Acampa, W.; Savastano, S.; Salvatore, M.; Lombardi, G. The severity of growth hormone deficiency correlates with the severity of cardiac impairment in 100 adult patients with hypopituitarism: an observational, case-control study. J. Clin. Endocrinol. Metab., 2004, 89(12), 5998-6004.
[141]
Arcopinto, M.; Bobbio, E.; Bossone, E.; Perrone-Filardi, P.; Napoli, R.; Sacca, L.; Cittadini, A. The GH/IGF-1 axis in chronic heart failure. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 76-91.
[142]
Arcopinto, M.; Salzano, A.; Giallauria, F.; Bossone, E.; Isgaard, J.; Marra, A.M.; Bobbio, E.; Vriz, O.; Åberg, D.N.; Masarone, D.; De Paulis, A.; Saldamarco, L.; Vigorito, C.; Formisano, P.; Niola, M.; Perticone, F.; Bonaduce, D.; Saccà, L.; Colao, A.; Cittadini, A. T.O.S.CA. (Trattamento ormonale scompenso cardiaco) Investigators. Growth hormone deficiency is associated with worse cardiac function, physical performance, and outcome in chronic heart failure: Insights from the T.O.S.CA. GHD study. PLoS One, 2017, 12(1)e0170058
[143]
Andreassen, M.; Kistorp, C.; Raymond, I.; Hildebrandt, P.; Gustafsson, F.; Kristensen, L.Ø.; Faber, J. Plasma insulin-like growth factor I as predictor of progression and all cause mortality in chronic heart failure. Growth Horm. IGF Res., 2009, 19(6), 486-490.
[144]
Bengtsson, B.A.; Edén, S.; Lönn, L.; Kvist, H.; Stokland, A.; Lindstedt, G.; Bosaeus, I.; Tölli, J.; Sjöström, L.; Isaksson, O.G. Treatment of adults with growth hormone (GH) deficiency with recombinant human GH. J. Clin. Endocrinol. Metab., 1993, 76(2), 309-317.
[145]
Maison, P.; Chanson, P. Cardiac effects of growth hormone in adults with growth hormone deficiency: A meta-analysis. Circulation, 2003, 108(21), 2648-2652.
[146]
Fowelin, J.; Attvall, S.; Lager, I.; Bengtsson, B.A. Effects of treatment with recombinant human growth hormone on insulin sensitivity and glucose metabolism in adults with growth hormone deficiency. Metabolism, 1993, 42(11), 1443-1447.
[147]
Svensson, J.; Fowelin, J.; Landin, K.; Bengtsson, B-A.; Johansson, J-O. Effects of seven years of GH-replacement therapy on insulin sensitivity in gh-deficient adults. J. Clin. Endocrinol. Metab., 2002, 87(5), 2121-2127.
[148]
Colao, A. The GH-IGF-I axis and the cardiovascular system: clinical implications. Clin. Endocrinol., (Oxf)., 2008, 69(3), 347-358.
[149]
Bollerslev, J.; Ueland, T.; Jørgensen, A.P.; Fougner, K.J.; Wergeland, R.; Schreiner, T.; Burman, P. Positive effects of a physiological dose of gh on markers of atherogenesis: a placebo-controlled study in patients with adult-onset gh deficiency. Eur. J. Endocrinol., 2006, 154(4), 537-543.
[150]
Pfeifer, M.; Verhovec, R.; Zizek, B.; Prezelj, J.; Poredos, P.; Clayton, R.N. growth hormone (GH) treatment reverses early atherosclerotic changes in gh-deficient adults. J. Clin. Endocrinol. Metab., 1999, 84(2), 453-457.
[151]
Colao, A.; Somma, C.Di; Savanelli, M.C.; Leo, M.De; Lombardi, G. Beginning to end: Cardiovascular implications of growth hormone (gh) deficiency and gh therapy. Growth Horm. IGF Res., 2006, 16, 41-48.
[152]
Giagulli, V.A.; Castellana, M.; Perrone, R.; Guastamacchia, E.; Iacoviello, M.; Triggiani, V. GH supplementation effects on cardiovascular risk in gh deficient adult patients: A systematic review and meta-analysis. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 285-296.
[153]
Hartman, M.L.; Xu, R.; Crowe, B.J.; Robison, L.L.; Erfurth, E.M.; Kleinberg, D.L.; Zimmermann, A.G.; Woodmansee, W.W.; Cutler, G.B.; Chipman, J.J.; Melmed, S. International hypoCCS advisory board. prospective safety surveillance of gh-deficient adults: comparison of GH-treated vs. untreated patients. J. Clin. Endocrinol. Metab., 2013, 98(3), 980-988.
[154]
Yang, R.; Bunting, S.; Gillett, N.; Clark, R.; Jin, H. Growth hormone improves cardiac performance in experimental heart failure. Circulation, 1995, 92(2), 262-267.
[155]
Duerr, R.L.; McKirnan, M.D.; Gim, R.D.; Clark, R.G.; Chien, K.R.; Ross, J. Cardiovascular effects of insulin-like growth factor-1 and growth hormone in chronic left ventricular failure in the rat. Circulation, 1996, 93(12), 2188-2196.
[156]
Ryoke, T.; Gu, Y.; Mao, L.; Hongo, M.; Clark, R.G.; Peterson, K.L.; Ross, J. Progressive cardiac dysfunction and fibrosis in the cardiomyopathic hamster and effects of growth hormone and angiotensin-converting enzyme inhibition. Circulation, 1999, 100(16), 1734-1743.
[157]
Fazio, S.; Sabatini, D.; Capaldo, B.; Vigorito, C.; Giordano, A.; Guida, R.; Pardo, F.; Biondi, B.; Saccà, L. A Preliminary Study of Growth Hormone in the Treatment of Dilated Cardiomyopathy. N. Engl. J. Med., 1996, 334(13), 809-814.
[158]
Genth-Zotz, S.; Zotz, R.; Geil, S.; Voigtländer, T.; Meyer, J.; Darius, H. Recombinant growth hormone therapy in patients with ischemic cardiomyopathy : Effects on hemodynamics, left ventricular function, and cardiopulmonary exercise capacity. Circulation, 1999, 99(1), 18-21.
[159]
Perrot, A.; Ranke, M.B.; Dietz, R.; Osterziel, K.J. Growth hormone treatment in dilated cardiomyopathy. J. Card. Surg., 16(2), 127-131.
[160]
Napoli, R.; Guardasole, V.; Matarazzo, M.; Palmieri, E.A.; Oliviero, U.; Fazio, S.; Saccà, L. Growth hormone corrects vascular dysfunction in patients with chronic heart failure. J. Am. Coll. Cardiol., 2002, 39(1), 90-95.
[161]
Acevedo, M.; Corbalán, R.; Chamorro, G.; Jalil, J.; Nazzal, C.; Campusano, C.; Castro, P. Administration of growth hormone to patients with advanced cardiac heart failure: Effects upon left ventricular function, exercise capacity, and neurohormonal status. Int. J. Cardiol., 2003, 87(2-3), 185-191.
[162]
Fazio, S.; Palmieri, E.A.; Affuso, F.; Cittadini, A.; Castellano, G.; Russo, T.; Ruvolo, A.; Napoli, R.; Saccà, L. Effects of growth hormone on exercise capacity and cardiopulmonary performance in patients with chronic heart failure. J. Clin. Endocrinol. Metab., 2007, 92(11), 4218-4223.
[163]
Spallarossa, P.; Rossettin, P.; Minuto, F.; Caruso, D.; Cordera, R.; Battistini, M.; Barreca, A.; Masperone, M.A.; Brunelli, C. Evaluation of growth hormone administration in patients with chronic heart failure secondary to coronary artery disease. Am. J. Cardiol., 1999, 84(4), 430-433.
[164]
Isgaard, J.; Bergh, C-H.; Caidahl, K.; Lomsky, M.; Hjalmarson, A.; Bengtsson, B. A placebo-controlled study of growth hormone in patients with congestive heart failure. Eur. Heart J., 1998, 19(11), 1704-1711.
[165]
Arcopinto, M.; Salzano, A.; Isgaard, J.; Cittadini, A. Hormone replacement therapy in heart failure. Curr. Opin. Cardiol., 2015, 30(3), 277-284.
[166]
Le Corvoisier, P.; Hittinger, L.; Chanson, P.; Montagne, O.; Macquin-Mavier, I.; Maison, P. Cardiac effects of growth hormone treatment in chronic heart failure: A meta-analysis. J. Clin. Endocrinol. Metab., 2007, 92(1), 180-185.
[167]
Tritos, N.A.; Danias, P.G. Growth hormone therapy in congestive heart failure due to left ventricular systolic dysfunction: A meta-analysis. Endocr. Pract., 2008, 14(1), 40-49.
[168]
Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health, 2009, 9(1), 88.
[169]
De Pergola, G.; Nardecchia, A.; Giagulli, V.A.; Triggiani, V.; Guastamacchia, E.; Minischetti, M.C.; Silvestris, F. Obesity and heart failure. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 51-57.
[170]
Ma, C.; Avenell, A.; Bolland, M.; Hudson, J.; Stewart, F.; Robertson, C.; Sharma, P.; Fraser, C.; MacLennan, G. Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: Systematic review and meta-analysis. BMJ, 2017, j4849.
[171]
Schernthaner, G. Cardiovascular mortality and morbidity in type-2 diabetes mellitus. Diabetes Res. Clin. Pract., 1996, 31(Suppl.), S3-S13.
[172]
Consensus trial study group. effects of enalapril on mortality in severe congestive heart failure. results of the cooperative north scandinavian enalapril survival study (CONSENSUS). N. Engl. J. Med., 1987, 316(23), 1429-1435.
[173]
From, A.M.; Leibson, C.L.; Bursi, F.; Redfield, M.M.; Weston, S.A.; Jacobsen, S.J.; Rodeheffer, R.J.; Roger, V.L. Diabetes in heart failure: Prevalence and impact on outcome in the population. Am. J. Med., 2006, 119(7), 591-599.
[174]
Thrainsdottir, I.S.; Aspelund, T.; Thorgeirsson, G.; Gudnason, V.; Hardarson, T.; Malmberg, K.; Sigurdsson, G.; Rydén, L. The association between glucose abnormalities and heart failure in the population-based reykjavik study. Diabetes Care, 2005, 28(3), 612-616.
[175]
Gottdiener, J.S.; Arnold, A.M.; Aurigemma, G.P.; Polak, J.F.; Tracy, R.P.; Kitzman, D.W.; Gardin, J.M.; Rutledge, J.E.; Boineau, R.C. Predictors of congestive heart failure in the elderly: the cardiovascular health study. J. Am. Coll. Cardiol., 2000, 35(6), 1628-1637.
[176]
Kannel, W.B.; McGee, D.L. Diabetes and cardiovascular disease. the framingham study. JAMA, 1979, 241(19), 2035-2038.
[177]
Iribarren, C.; Karter, A.J.; Go, A.S.; Ferrara, A.; Liu, J.Y.; Sidney, S.; Selby, J.V. Glycemic control and heart failure among adult patients with diabetes. Circulation, 2001, 103(22), 2668-2673.
[178]
MacDonald, M.R.; Petrie, M.C.; Varyani, F.; Ostergren, J.; Michelson, E.L.; Young, J.B.; Solomon, S.D.; Granger, C.B.; Swedberg, K.; Yusuf, S.; Pfeffer, M.A.; McMurray, J.J.V. CHARM investigators. impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: An analysis of the candesartan in heart failure: Assessment of reduction in mortality and morbidity (CHARM) programme. Eur. Heart J., 2008, 29(11), 1377-1385.
[179]
Amato, L.; Paolisso, G.; Cacciatore, F.; Ferrara, N.; Ferrara, P.; Canonico, S.; Varricchio, M.; Rengo, F. Congestive heart failure predicts the development of non-insulin-dependent diabetes Mellitus in the Elderly. The osservatorio geriatrico regione campania group. Diabetes Metab., 1997, 23(3), 213-218.
[180]
Dei Cas, A.; Spigoni, V.; Ridolfi, V.; Metra, M. Diabetes and chronic heart failure: From diabetic cardiomyopathy to therapeutic approach. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(1), 38-50.
[181]
Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A.W. 10-Year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med., 2008, 359(15), 1577-1589.
[182]
Knatterud, G.L. University group diabetes program (UGDP). In: Encyclopedia of Biostatistics; John Wiley & Sons, Ltd: Chichester, UK, 2005.
[183]
The university group diabetes program. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. V. Evaluation of Pheniformin Therapy. Diabetes, 1975, 24(Suppl. 1), 65-184.
[184]
American Diabetes Association. 8. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2018. Diabetes Care, 2018, 41(Supplement. 1), S73-S85.
[185]
NICE. Type 2 diabetes in adults: Management; Natl. Inst. Heal. Care Excell, 2018.
[186]
Roussel, R.; Travert, F.; Pasquet, B.; Wilson, P.W.F.; Smith, S.C.; Goto, S.; Ravaud, P.; Marre, M.; Porath, A.; Bhatt, D.L.; Steg, P.G. Reduction of atherothrombosis for continued health (reach) registry investigators. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch. Intern. Med., 2010, 170(21), 1892-1899.
[187]
Boussageon, R.; Supper, I.; Bejan-Angoulvant, T.; Kellou, N.; Cucherat, M.; Boissel, J-P.; Kassai, B.; Moreau, A.; Gueyffier, F.; Cornu, C. Reappraisal of metformin efficacy in the treatment of type 2 diabetes: A meta-analysis of randomised controlled trials. PLoS Med., 2012, 9(4)e1001204
[188]
Eurich, D.T.; Weir, D.L.; Majumdar, S.R.; Tsuyuki, R.T.; Johnson, J.A.; Tjosvold, L.; Vanderloo, S.E.; McAlister, F.A. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: Systematic review of observational studies involving 34 000 patients. Circ Heart Fail, 2013, 6(3), 395-402.
[189]
Klepzig, H.; Kober, G.; Matter, C.; Luus, H.; Schneider, H.; Boedeker, K.H.; Kiowski, W.; Amann, F.W.; Gruber, D.; Harris, S.; Burger, W. Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur. Heart J., 1999, 20(6), 439-446.
[190]
Pantalone, K.M.; Kattan, M.W.; Yu, C.; Wells, B.J.; Arrigain, S.; Jain, A.; Atreja, A.; Zimmerman, R.S. The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: A retrospective analysis. Acta Diabetol., 2009, 46(2), 145-154.
[191]
Tzoulaki, I.; Molokhia, M.; Curcin, V.; Little, M.P.; Millett, C.J.; Ng, A.; Hughes, R.I.; Khunti, K.; Wilkins, M.R.; Majeed, A.; Elliott, P. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ, 2009, 339(dec03 1), b4731-b4731.
[192]
Rosenstock, J.; Marx, N.; Kahn, S.E.; Zinman, B.; Kastelein, J.J.; Lachin, J.M.; Bluhmki, E.; Patel, S.; Johansen, O-E.; Woerle, H-J. Cardiovascular outcome trials in type 2 diabetes and the sulphonylurea controversy: Rationale for the active-comparator carolina trial. Diabetes. Vasc. Dis. Res., 2013, 10(4), 289-301.
[193]
Nissen, S.E.; Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med., 2007, 356(24), 2457-2471.
[194]
Home, P D.; Pocock, S.J.; Beck-Nielsen, H.; Curtis, P.S.; Gomis, R.; Hanefeld, M.; Jones, N.P.; Komajda, M.; McMurray, J. J. V RECORD study team. rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (record): A multicentre, randomised, Open-Label Trial. Lancet, (London, England), 2009, 373(9681), 2125-2135.
[195]
DeFronzo, R.A.; Mehta, R.J.; Schnure, J. Pleiotropic effects of thiazolidinediones: implications for the treatment of patients with type 2 diabetes mellitus. Hosp. Pract., 2013, 41(2), 132-147.
[196]
Dormandy, J.A.; Charbonnel, B.; Eckland, D.J.; Erdmann, E.; Massi-Benedetti, M.; Moules, I.K.; Skene, A.M.; Tan, M.H.; Lefèbvre, P.J.; Murray, G.D.; Standl, E.; Wilcox, R.G.; Wilhelmsen, L.; Betteridge, J.; Birkeland, K.; Golay, A.; Heine, R.J.; Korányi, L.; Laakso, M.; Mokáň, M.; Norkus, A.; Pirags, V.; Podar, T.; Scheen, A.; Scherbaum, W.; Schernthaner, G.; Schmitz, O.; Škrha, J.; Smith, U.; Tatoň, J. PROactive investigators secondary prevention of macrovascular events in patients with type 2 diabetes in the proactive study (prospective pioglitazone clinical trial in macrovascular events): A randomised controlled Trial. Lancet, 2005, 366(9493), 1279-1289.
[197]
Nesto, R.W.; Bell, D.; Bonow, R.O.; Fonseca, V.; Grundy, S.M.; Horton, E.S.; Le Winter, M.; Porte, D.; Semenkovich, C.F.; Smith, S.; Young, L.H.; Kahn, R. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the american heart association and american diabetes association. Diabetes Care, 2004, 27(1), 256-263.
[198]
Scirica, B.M.; Bhatt, D.L.; Braunwald, E.; Steg, P.G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.D.; Hoffman, E.B.; Cavender, M.A.; Udell, J.A.; Desai, N.R.; Mosenzon, O.; McGuire, D.K.; Ray, K.K.; Leiter, L.A.; Raz, I. SAVOR-TIMI 53 steering committee and investigators. saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med., 2013, 369(14), 1317-1326.
[199]
Green, J.B.; Bethel, M.A.; Armstrong, P.W.; Buse, J.B.; Engel, S.S.; Garg, J.; Josse, R.; Kaufman, K.D.; Koglin, J.; Korn, S.; Lachin, J.M.; McGuire, D.K.; Pencina, M.J.; Standl, E.; Stein, P.P.; Suryawanshi, S.; Van de Werf, F.; Peterson, E.D.; Holman, R.R. TECOS Study Group Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med., 2015, 373(3), 232-242.
[200]
White, W.B.; Cannon, C.P.; Heller, S.R.; Nissen, S.E.; Bergenstal, R.M.; Bakris, G.L.; Perez, A.T.; Fleck, P.R.; Mehta, C.R.; Kupfer, S.; Wilson, C.; Cushman, W.C.; Zannad, F. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med., 2013, 369(14), 1327-1335.
[201]
Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; Steinberg, W.M.; Stockner, M.; Zinman, B.; Bergenstal, R.M.; Buse, J.B. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med., 2016, 375(4), 311-322.
[202]
Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.C.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; Maggioni, A.P.; McMurray, J.J.V.; Probstfield, J.L.; Riddle, M.C.; Solomon, S.D.; Tardif, J-C. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med., 2015, 373(23), 2247-2257.
[203]
Ferdinand, K.C.; Botros, F.T.; Atisso, C.M.; Sager, P.T. Cardiovascular safety for once-weekly dulaglutide in type 2 diabetes: a pre-specified meta-analysis of prospectively adjudicated cardiovascular events. Cardiovasc. Diabetol., 2016, 15(1), 38.
[204]
Zinman, B.; Lachin, J.M.; Inzucchi, S.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med., 2016, 374(11), 1092-1094.
[205]
Fitchett, D.; Zinman, B.; Wanner, C.; Lachin, J.M.; Hantel, S.; Salsali, A.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. EMPA-REG OUTCOME® trial investigators. heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: Results of the empa-reg outcome ® trial. Eur. Heart J., 2016, 37(19), 1526-1534.
[206]
Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. CANVAS program collaborative group. canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med., 2017, 377(7), 644-657.
[207]
Celi, F.S.; Zemskova, M.; Linderman, J.D.; Smith, S.; Drinkard, B.; Sachdev, V.; Skarulis, M.C.; Kozlosky, M.; Csako, G.; Costello, R.; Pucino, F. metabolic effects of liothyronine therapy in hypothyroidism: A randomized, double-blind, crossover trial of liothyronine versus levothyroxine. J. Clin. Endocrinol. Metab., 2011, 96(11), 3466-3474.
[208]
Grozinsky-Glasberg, S.; Fraser, A.; Nahshoni, E.; Weizman, A.; Leibovici, L. Thyroxine-triiodothyronine combination therapy versus thyroxine monotherapy for clinical hypothyroidism: Meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab., 2006, 91(7), 2592-2599.
[209]
Rizzo, C.; Gioia, M.I.; Parisi, G.; Triggiani, V.; Iacoviello, M. Dysthyroidism and chronic heart failure: Pathophysiological mechanisms and therapeutic approaches. Adv. Exp. Med. Biol., 2018, 1067, 239-253.
[210]
Guglielmi, R.; Grimaldi, F.; Negro, R.; Frasoldati, A.; Misischi, I.; Graziano, F.; Cipri, C.; Guastamacchia, E.; Triggiani, V.; Papini, E. Shift from levothyroxine tablets to liquid formulation at breakfast improves quality of life of hypothyroid patients. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(3), 235-240.
[211]
Arcopinto, M.; Salzano, A.; Ferrara, F.; Bobbio, E.; Marra, A.M.; Abete, R.; Stagnaro, F.; Polizzi, R.; Giallauria, F.; Illario, M.; Menditto, E.; Vigorito, C.; Bossone, E.; Cittadini, A. The tosca registry: an ongoing, observational, multicenter registry for chronic heart failure. Transl. Med., @. UniSa, 2016, 14, 21-27.
[212]
Arcopinto, M.; Salzano, A.; Bossone, E.; Ferrara, F.; Bobbio, E.; Sirico, D.; Vriz, O.; De Vincentiis, C.; Matarazzo, M.; Saldamarco, L.; Saccà, F.; Napoli, R.; Iacoviello, M.; Triggiani, V.; Isidori, A.M.; Vigorito, C.; Isgaard, J.; Cittadini, A. Multiple hormone deficiencies in chronic heart failure. Int. J. Cardiol., 2015, 184, 421-423.
[213]
Bossone, E.; Arcopinto, M.; Iacoviello, M.; Triggiani, V.; Cacciatore, F.; Maiello, C.; Limongelli, G.; Masarone, D.; Perticone, F.; Sciacqua, A.; Perrone-Filardi, P.; Mancini, A.; Volterrani, M.; Vriz, O.; Castello, R.; Passantino, A.; Campo, M.; Modesti, P.A.; De Giorgi, A.; Monte, I.; Puzzo, A.; Ballotta, A.; Caliendo, L.; D’Assante, R.; Marra, A.M.; Salzano, A.; Suzuki, T.; Cittadini, A. TOSCA investigators. multiple hormonal and metabolic deficiency syndrome in chronic heart failure: Rationale, design, and demographic characteristics of the T.O.S.CA. registry. Intern. Emerg. Med., 2018, 13(5), 661-671.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy