Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

One-pot Synthesis of Betulin Triterpenoid Quaternized Pyridine Derivatives and their Antimicrobial Activity

Author(s): Elvira Rifovna Shakurova, Darina Alexandrovna Pozdnyakova, Elena Valeryevna Tretyakova and Lyudmila Vyacheslavovna Parfenova*

Volume 17, Issue 1, 2020

Page: [79 - 84] Pages: 6

DOI: 10.2174/1570180816666181217123629

Price: $65

Abstract

Background: A wide range of biological activity, relatively low toxicity and multiple pharmacological effects of triterpenoids are major advantages of these compounds in the prevention and treatment of various diseases. They include the lupane- type triterpenoids that proved to be a promising platform for the synthesis of analogs with a wide range of biological activities, including anti-inflammatory, antitumor, antiparasitic and antiviral properties. The main disadvantage complicating the use of all known derivatives of lupane acids in medical practice is low bioavailability associated with poor solubility in biologic fluids, limiting their effective interaction with the biological targets.

Objective: The objective of this study is the synthesis of new amphiphilic betulin derivatives on the base of pyridinium salts with antifungal and antibacterial activity.

Methods: In this study we have developed an effective one-pot method for the preparation of new quaternized pyridine derivatives 4-6 of the betulinic series based on the reaction of the initial triterpenes 1-3 with the Tempo+Br3 - reagent in the pyridine. The synthesized and initial compounds were tested for their antimicrobial and antifungal activity.

Results: The data presented in this document indicate that all synthesized compounds 4-6 exhibited high activity against both gram-positive Staphylococcus aureus bacteria and gram-negative Pseudomonas aeruginosa strains, as well as Candida albicans and Cryptococcus neoformans fungi with the >90% coverage of the inhibition zone. The best result in a series of compounds 4-6 was found for the derivative 6 at the minimum inhibitory concentration of 1 µg/ml against S. aureus bacteria, C. albicans and C. neoformans fungi at the concentration of 8 µg/ml.

Conclusion: Thus, we have demonstrated the first example of the pyridine quaternization using the betulin triterpenoids as the lipophilic substrates and Tempo+Br3 - cation. The obtained quaternized pyridine analogs of betulin triterpenes showed high antibacterial and antifungal activity in comparison with the initial compounds.

Keywords: Betulin, tempo+Br3 - cation, quaternized pyridinium salts, antibacterial activity, antifungal activity, Candida albicans.

Graphical Abstract
[1]
Honda, T.; Liby, K.T.; Su, X.; Sundararajan, C.; Honda, Y.; Suh, N.; Risingsong, R.; Williams, C.R.; Royce, D.B.; Sporn, M.B.; Gribble, G.W. Design, synthesis, and anti-inflammatory activity both in vitro and in vivo of new betulinic acid analogues having an enone functionality in ring A. Bioorg. Med. Chem. Lett., 2006, 16(24), 6306-6309.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.012] [PMID: 16996735]
[2]
Spivak, A.Yu.; Nedopekina, D.A.; Shakurova, E.R.; Khalitova, R.R.; Gubaidullin, R.R.; Odinokov, V.N.; Dzhemilev, U.M.; Bel’skii, Yu.P.; Bel’skaya, N.V.; Stankevich, S.A.; Korotkaya, E.V.; Khazanov, V.A. Synthesis of lupane triterpenoids with triphenylphosphonium substituents and studies of their antitumor activity. Russ. Chem. Bull., 2013, 62, 188-198.
[http://dx.doi.org/10.1007/s11172-013-0028-y]
[3]
Spivak, A.Yu.; Keiser, J.; Vargas, M.; Gubaidullin, R.R.; Nedopekina, D.A.; Shakurova, E.R.; Khalitova, R.R.; Odinokov, V.N. Synthesis and activity of new triphenylphosphonium derivatives of betulin and betulinic acid against Schistosoma mansoni in vitro and in vivo. Bioorg. Med. Chem., 2014, 22(21), 6297-6304.
[http://dx.doi.org/10.1016/j.bmc.2014.07.014] [PMID: 25245671]
[4]
Alakurtti, S.; Mäkelä, T.; Koskimies, S.; Yli-Kauhaluoma, J. Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci., 2006, 29(1), 1-13.
[http://dx.doi.org/10.1016/j.ejps.2006.04.006] [PMID: 16716572]
[5]
J.C., Furtado N.A.; Pirson, L.; Edelberg, H.; M Miranda, L.; Loira-Pastoriza, C.; Preat, V.; Larondelle, Y.; André, C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules, 2017, 22(3), 400-424.
[http://dx.doi.org/10.3390/molecules22030400] [PMID: 28273859]
[6]
Hess, S.C.; Brum, R.L.; Honda, N.K.; Cruz, A.B.; Moretto, E.; Cruz, R.B.; Messana, I.; Ferrari, F.; Cechinel Filho, V.; Yunes, R.A. Antibacterial activity and phytochemical analysis of Vochysia divergens (Vochysiaceae). J. Ethnopharmacol., 1995, 47(2), 97-100.
[http://dx.doi.org/10.1016/0378-8741(95)01260-K] [PMID: 7500642]
[7]
Nick, A.; Wright, A.D.; Rali, T.; Sticher, O. Antibacterial triterpenoids from Dillenia papuana and their structure-activity relationships. Phytochemistry, 1995, 40(6), 1691-1695.
[http://dx.doi.org/10.1016/0031-9422(95)00491-O] [PMID: 8590637]
[8]
Krasutsky, P.A. Birch bark research and development. Nat. Prod. Rep., 2006, 23(6), 919-942.
[http://dx.doi.org/10.1039/b606816b] [PMID: 17119640]
[9]
Zhao, T.; Sun, G. Hydrophobicity and antimicrobial activities of quaternary pyridinium salts. J. Appl. Microbiol., 2008, 104(3), 824-830.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03616.x] [PMID: 17973914]
[10]
Sundararaman, M.; Rajesh Kumar, R.; Venkatesan, P.; Ilangovan, A. 1-alkyl-(N,N-dimethylamino)pyridinium bromides: Inhibitory effect on virulence factors of Candida albicans and on the growth of bacterial pathogens. J. Med. Microbiol., 2013, 62(Pt 2), 241-248.
[http://dx.doi.org/10.1099/jmm.0.050070-0] [PMID: 23118472]
[11]
Tischer, M.; Pradel, G.; Ohlsen, K.; Holzgrabe, U. Quaternary ammonium salts and their antimicrobial potential: Targets or nonspecific interactions? ChemMedChem, 2012, 7(1), 22-31.
[http://dx.doi.org/10.1002/cmdc.201100404] [PMID: 22113995]
[12]
Arning, J.; Stolte, S.; Böschen, A.; Stock, F.; Pitner, W-R.; Welz-Biermann, U.; Jastorffa, B.; Ranke, J. Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. Green Chem., 2008, 10, 47-58.
[http://dx.doi.org/10.1039/B712109A]
[13]
Holy, J.; Kolomitsyna, O.; Krasutsky, D.; Oliveira, P.J.; Perkins, E.; Krasutsky, P.A. Dimethylaminopyridine derivatives of lupane triterpenoids are potent disruptors of mitochondrial structure and function. Bioorg. Med. Chem., 2010, 18(16), 6080-6088.
[http://dx.doi.org/10.1016/j.bmc.2010.06.075] [PMID: 20673631]
[14]
Bernardo, T.C.; Cunha-Oliveira, T.; Serafim, T.L.; Holy, J.; Krasutsky, D.; Kolomitsyna, O.; Krasutsky, P.; Moreno, A.M.; Oliveira, P.J. Dimethylaminopyridine derivatives of lupane triterpenoids cause mitochondrial disruption and induce the permeability transition. Bioorg. Med. Chem., 2013, 21(23), 7239-7249.
[http://dx.doi.org/10.1016/j.bmc.2013.09.066] [PMID: 24156937]
[15]
Serafim, T.L.; Carvalho, F.S.; Bernardo, T.C.; Pereira, G.C.; Perkins, E.; Holy, J.; Krasutsky, D.A.; Kolomitsyna, O.N.; Krasutsky, P.A.; Oliveira, P.J. New derivatives of lupane triterpenoids disturb breast cancer mitochondria and induce cell death. Bioorg. Med. Chem., 2014, 22(21), 6270-6287.
[http://dx.doi.org/10.1016/j.bmc.2014.08.013] [PMID: 25245673]
[16]
Krasutsky, P.A.; Avilov, D.; Sergeeva, T.; Krasutskyy, D.A.; Kolomitsyna, O. Triterpene quaternary salts as biologically active surfactants. U.S. Patent 7,410 958, August 12, 2008.
[17]
Madaan, P.; Tyagi, V.K. Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. J. Oleo Sci., 2008, 57, 197-215.
[http://dx.doi.org/10.5650/jos.57.197] [PMID: 18332584]
[18]
Kim, D.S.H.L.; Chen, Z.; Ngugen, V.T.; Pezzuto, J.M.; Qui, S.; Lu, Z.Z. A concise semi-synthetic approach to betulinic acid from betulin. Synth. Commun., 1997, 27, 1607-1612.
[http://dx.doi.org/10.1080/00397919708006099]
[19]
Tietze, L.F.; Heinzen, H.; Moyna, P.; Rischer, M.; Neunaber, H. Synthesis of [13C]- and [2H] betulin for biological transformations. Liebigs Ann. Chem., 1991, 12, 1245-1368.
[http://dx.doi.org/10.1002/jlac.1991199101215]
[20]
Urban, M.; Sarek, J.; Kvasnica, M.; Tislerova, I.; Hajduch, M. Triterpenoid pyrazines and benzopyrazines with cytotoxic activity. J. Nat. Prod., 2007, 70(4), 526-532.
[http://dx.doi.org/10.1021/np060436d] [PMID: 17371067]
[21]
Zhadanov, R.I.; Golubev, V.A.; Rozantsev, E.G. Synthesis and structure of certain 1-oxopiperidinium tribromides. Izv. Akad. Nauk SSSR [Khim], 1970, 1, 186-187.
[http://dx.doi.org/10.1007/BF00913959]
[22]
Cockerill, F.R.; Wikler, M.A.; Alder, J.; Dudley, M.N.; Eliopoulos, J.M.; Ferraro, M.J.; Hardy, D.J.; Hecht, D.W.; Hindler, J.A.; Patel, J.B.; Powell, M.; Swenson, J.M.; Thomson, R.B.; Traczewski, M.M.; Turnidge, J.D.; Weinstein, M.P.; Zimmer, B.L. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 9th ed; Clinical and Laboratory Standards Institute: Wayne, 2012.

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy