Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Application of the Co-Agonist Concerted Transition Model to Analysis of GABAA Receptor Properties

Author(s): Allison L. Germann, Joe Henry Steinbach and Gustav Akk*

Volume 17, Issue 9, 2019

Page: [843 - 851] Pages: 9

DOI: 10.2174/1570159X17666181206092418

Abstract

The co-agonist concerted transition model is a simple and practical solution to analyze various aspects of GABAA receptor function. Several model-based predictions have been verified experimentally in previous reports. We review here the practical implications of the model and demonstrate how it enables simplification of the experimental procedure and data analysis to characterize the effects of mutations or properties of novel ligands. Specifically, we show that the value of EC50 and the magnitude of current response are directly affected by basal activity, and that coapplication of a background agonist acting at a distinct site or use of a gain-of-function mutation can be employed to enable studies of weak activators or mutated receptors with impaired gating. We also show that the ability of one GABAergic agent to potentiate the activity elicited by another is a computable value that depends on the level of constitutive activity of the ion channel and the ability of each agonist to directly activate the receptor. Significantly, the model accurately accounts for situations where the paired agonists interact with the same site compared to distinct sites on the receptor.

Keywords: GABAA receptor, ion channel, agonist, potentiator, activation, potentiation, modulation, model.

Graphical Abstract
[1]
Chua, H.C.; Chebib, M. GABAA receptors and the diversity in their structure and pharmacology. Adv. Pharmacol., 2017, 79, 1-34. [http://dx.doi.org/10.1016/bs.apha.2017.03.003]. [PMID: 28528665].
[2]
Franks, N.P. Molecular targets underlying general anaesthesia. Br. J. Pharmacol., 2006, 147(Suppl. 1), S72-S81. [http://dx.doi.org/10. 1038/sj.bjp.0706441]. [PMID: 16402123].
[3]
Akk, G.; Covey, D.F.; Evers, A.S.; Steinbach, J.H.; Zorumski, C.F.; Mennerick, S. Mechanisms of neurosteroid interactions with GABA(A) receptors. Pharmacol. Ther., 2007, 116(1), 35-57. [http:// dx.doi.org/10.1016/j.pharmthera.2007.03.004]. [PMID: 17524487].
[4]
Monod, J.; Wyman, J.; Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol., 1965, 12, 88-118. [http:// dx.doi.org/10.1016/S0022-2836(65)80285-6]. [PMID: 14343300].
[5]
Karlin, A. On the application of “a plausible model” of allosteric proteins to the receptor for acetylcholine. J. Theor. Biol., 1967, 16(2), 306-320. [http://dx.doi.org/10.1016/0022-5193(67)90011-2]. [PMID: 6048545].
[6]
Auerbach, A. Thinking in cycles: MWC is a good model for acetylcholine receptor-channels. J. Physiol., 2012, 590(1), 93-98. [http:// dx.doi.org/10.1113/jphysiol.2011.214684]. [PMID: 21807612].
[7]
Chang, Y.; Weiss, D.S. Allosteric activation mechanism of the α 1 β 2 γ 2 γ-aminobutyric acid type A receptor revealed by mutation of the conserved M2 leucine. Biophys. J., 1999, 77(5), 2542-2551. [http://dx.doi.org/10.1016/S0006-3495(99)77089-X]. [PMID: 10545355].
[8]
Stewart, D.; Desai, R.; Cheng, Q.; Liu, A.; Forman, S.A. Tryptophan mutations at azi-etomidate photo-incorporation sites on α1 or β2 subunits enhance GABAA receptor gating and reduce etomidate modulation. Mol. Pharmacol., 2008, 74(6), 1687-1695. [http://dx. doi.org/10.1124/mol.108.050500]. [PMID: 18805938].
[9]
Akk, G.; Shin, D.J.; Germann, A.L.; Steinbach, J.H. GABA type A receptor activation in the allosteric coagonist model framework: relationship between EC50 and basal activity. Mol. Pharmacol., 2018, 93(2), 90-100. [http://dx.doi.org/10.1124/mol.117.110569]. [PMID: 29150461].
[10]
Rüsch, D.; Forman, S.A. Classic benzodiazepines modulate the open-close equilibrium in α1β2γ2L γ-aminobutyric acid type A receptors. Anesthesiology, 2005, 102(4), 783-792. [http://dx.doi.org/ 10.1097/00000542-200504000-00014]. [PMID: 15791108].
[11]
Rüsch, D.; Zhong, H.; Forman, S.A. Gating allosterism at a single class of etomidate sites on α1β2γ2L GABA A receptors accounts for both direct activation and agonist modulation. J. Biol. Chem., 2004, 279(20), 20982-20992. [http://dx.doi.org/10.1074/jbc. M400472200]. [PMID: 15016806].
[12]
Ruesch, D.; Neumann, E.; Wulf, H.; Forman, S.A. An allosteric coagonist model for propofol effects on α1β2γ2L γ-aminobutyric acid type A receptors. Anesthesiology, 2012, 116(1), 47-55. [http:// dx.doi.org/10.1097/ALN.0b013e31823d0c36]. [PMID: 22104494].
[13]
Campo-Soria, C.; Chang, Y.; Weiss, D.S. Mechanism of action of benzodiazepines on GABAA receptors. Br. J. Pharmacol., 2006, 148(7), 984-990. [http://dx.doi.org/10.1038/sj.bjp.0706796]. [PMID: 16783415].
[14]
Eaton, M.M.; Germann, A.L.; Arora, R.; Cao, L.Q.; Gao, X.; Shin, D.J.; Wu, A.; Chiara, D.C.; Cohen, J.B.; Steinbach, J.H.; Evers, A.S.; Akk, G. Multiple non-equivalent interfaces mediate direct activation of GABAA receptors by propofol. Curr. Neuropharmacol., 2016, 14(7), 772-780. [http://dx.doi.org/10.2174/1570159X146661 60202121319]. [PMID: 26830963].
[15]
Forman, S.A.; Stewart, D. Mutations in the GABAA receptor that mimic the allosteric ligand etomidate. Methods Mol. Biol., 2012, 796, 317-333. [http://dx.doi.org/10.1007/978-1-61779-334-9_17]. [PMID: 22052498].
[16]
Lape, R.; Colquhoun, D.; Sivilotti, L.G. On the nature of partial agonism in the nicotinic receptor superfamily. Nature, 2008, 454(7205), 722-727. [http://dx.doi.org/10.1038/nature07139]. [PMID: 18633353].
[17]
Gielen, M.C.; Lumb, M.J.; Smart, T.G. Benzodiazepines modulate GABAA receptors by regulating the preactivation step after GABA binding. J. Neurosci., 2012, 32(17), 5707-5715. [http://dx.doi.org/ 10.1523/JNEUROSCI.5663-11.2012]. [PMID: 22539833].
[18]
Forman, S.A. Monod-Wyman-Changeux allosteric mechanisms of action and the pharmacology of etomidate. Curr. Opin. Anaesthesiol., 2012, 25(4), 411-418. [http://dx.doi.org/10.1097/ACO.0b013 e328354feea]. [PMID: 22614249].
[19]
Steinbach, J.H.; Akk, G. Applying the Monod-Wyman-Changeux allosteric activation model to pseudo-steady-state responses from GABAA receptors. Mol. Pharmacol., 2019, 95(1), 106-119. [http://dx.doi.org/10.1124/mol.118.113787]. [PMID: 30333132].
[20]
Ehlert, F.J. Analysis of Allosteric Interactions at Ligand-Gated Ion Channels In: Affinity and Efficacy; World Scientific Publishing Co. Pte. Ltd, 2014; pp. Singapore179-249
[21]
Cao, L.Q.; Montana, M.C.; Germann, A.L.; Shin, D.J.; Chakrabarti, S.; Mennerick, S.; Yuede, C.M.; Wozniak, D.F.; Evers, A.S.; Akk, G. Enhanced GABAergic actions resulting from the coapplication of the steroid 3α-hydroxy-5α-pregnane-11,20-dione (alfaxalone) with propofol or diazepam. Sci. Rep., 2018, 8(1), 10341. [http:// dx.doi.org/10.1038/s41598-018-28754-7]. [PMID: 29985445].
[22]
Li, P.; Eaton, M.M.; Steinbach, J.H.; Akk, G. The benzodiazepine diazepam potentiates responses of α1β2γ2L γ-aminobutyric acid type A receptors activated by either γ-aminobutyric acid or allosteric agonists. Anesthesiology, 2013, 118(6), 1417-1425. [http://dx. doi.org/10.1097/ALN.0b013e318289bcd3]. [PMID: 23407108].
[23]
Amin, J.; Weiss, D.S. GABAA receptor needs two homologous domains of the β-subunit for activation by GABA but not by pentobarbital. Nature, 1993, 366(6455), 565-569. [http://dx.doi.org/ 10.1038/366565a0]. [PMID: 7504783].
[24]
Chang, Y.; Wang, R.; Barot, S.; Weiss, D.S. Stoichiometry of a recombinant GABAA receptor. J. Neurosci., 1996, 16(17), 5415-5424. [http://dx.doi.org/10.1523/JNEUROSCI.16-17-05415.1996]. [PMID: 8757254].
[25]
Shin, D.J.; Germann, A.L.; Johnson, A.D.; Forman, S.A.; Steinbach, J.H.; Akk, G. Propofol is an allosteric agonist with multiple binding sites on concatemeric ternary GABAA receptors. Mol. Pharmacol., 2018, 93(2), 178-189. [http://dx.doi.org/10.1124/mol. 117.110403]. [PMID: 29192122].
[26]
Shin, D.J.; Germann, A.L.; Steinbach, J.H.; Akk, G. The actions of drug combinations on the GABAA receptor manifest as curvilinear isoboles of additivity. Mol. Pharmacol., 2017, 92(5), 556-563. [http://dx.doi.org/10.1124/mol.117.109595]. [PMID: 28790148].
[27]
Tran, P.N.; Laha, K.T.; Wagner, D.A. A tight coupling between β2Y97 and β2F200 of the GABA(A) receptor mediates GABA binding. J. Neurochem., 2011, 119(2), 283-293. [http://dx.doi.org/ 10.1111/j.1471-4159.2011.07409.x]. [PMID: 21806616].
[28]
Boileau, A.J.; Newell, J.G.; Czajkowski, C. GABA(A) receptor β 2 Tyr97 and Leu99 line the GABA-binding site. Insights into mechanisms of agonist and antagonist actions. J. Biol. Chem., 2002, 277(4), 2931-2937. [http://dx.doi.org/10.1074/jbc.M109334200]. [PMID: 11711541].
[29]
Shin, D.J.; Germann, A.L.; Covey, D.F.; Steinbach, J.H.; Akk, G. Analysis of GABAA receptor activation by combinations of agonists acting at the same or distinct binding sites. Mol. Pharmacol., 2019, 95(1), 70-81. [http://dx.doi.org/10.1124/mol.118.113464]. [PMID: 30337372].
[30]
Chiara, D.C.; Jayakar, S.S.; Zhou, X.; Zhang, X.; Savechenkov, P.Y.; Bruzik, K.S.; Miller, K.W.; Cohen, J.B. Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor. J. Biol. Chem., 2013, 288(27), 19343-19357. [http://dx.doi.org/10.1074/jbc.M113.479725]. [PMID: 23677991].
[31]
Jayakar, S.S.; Zhou, X.; Chiara, D.C.; Dostalova, Z.; Savechenkov, P.Y.; Bruzik, K.S.; Dailey, W.P.; Miller, K.W.; Eckenhoff, R.G.; Cohen, J.B. Multiple propofol-binding sites in a γ-aminobutyric acid type A receptor (GABAAR) identified using a photoreactive propofol analog. J. Biol. Chem., 2014, 289(40), 27456-27468. [http://dx.doi.org/10.1074/jbc.M114.581728]. [PMID: 25086038].
[32]
Germann, A.L.; Shin, D.J.; Kuhrau, C.R.; Johnson, A.D.; Evers, A.S.; Akk, G. High constitutive activity accounts for the combination of enhanced direct activation and reduced potentiation in mutated GABAA receptors. Mol. Pharmacol., 2018, 93(5), 468-476. [http://dx.doi.org/10.1124/mol.117.111435]. [PMID: 29439087].
[33]
Li, P.; Akk, G. Synaptic-type α1β2γ2L GABAA receptors produce large persistent currents in the presence of ambient GABA and anesthetic drugs. Mol. Pharmacol., 2015, 87(5), 776-781. [http://dx. doi.org/10.1124/mol.114.096453]. [PMID: 25667223].
[34]
Nourmahnad, A.; Stern, A.T.; Hotta, M.; Stewart, D.S.; Ziemba, A.M.; Szabo, A.; Forman, S.A. Tryptophan and cysteine mutations in M1 helices of α1β3γ2L γ-aminobutyric acid type A receptors indicate distinct intersubunit sites for four intravenous anesthetics and one orphan site. Anesthesiology, 2016, 125(6), 1144-1158. [http:// dx.doi.org/10.1097/ALN.0000000000001390]. [PMID: 27753644].
[35]
Bracamontes, J.R.; Steinbach, J.H. Steroid interaction with a single potentiating site is sufficient to modulate GABA-A receptor function. Mol. Pharmacol., 2009, 75(4), 973-981. [http://dx.doi.org/ 10.1124/mol.108.053629]. [PMID: 19176850].
[36]
Bracamontes, J.; McCollum, M.; Esch, C.; Li, P.; Ann, J.; Steinbach, J.H.; Akk, G. Occupation of either site for the neurosteroid allopregnanolone potentiates the opening of the GABAA receptor induced from either transmitter binding site. Mol. Pharmacol., 2011, 80(1), 79-86. [http://dx.doi.org/10.1124/mol.111.071662]. [PMID: 21498656].

© 2024 Bentham Science Publishers | Privacy Policy