Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Trends in the Analysis of Biopharmaceuticals by HPLC

Author(s): Angela Tartaglia, Marcello Locatelli and Victoria Samanidou*

Volume 16, Issue 1, 2020

Page: [52 - 58] Pages: 7

DOI: 10.2174/1573411015666181205114810

Price: $65

Abstract

Background: Biopharmaceuticals are biological drugs consisting of a complex compound that can be produced by a living organism or derive from it. Biopharmaceuticals are very complicated compounds from structural point of view and for this reason, they cannot be fully characterized in terms of their structure with current analytical methods as it happens instead of low molecular weight chemicals drugs.

Introduction: The regulatory guidelines require the characterization of the primary or higher sequence of these molecules and the characterization of any post-translational modifications. The use of biopharmaceuticals has really grown in the last few years: in 2016, the number of biopharmaceuticals approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for use in humans’ diseases was 1357. From 2013 to 2016, 73 of these compounds were approved for the treatment of cancer, inflammation, immune disorders, infections, anemia and cardiovascular diseases.

Aim/Conclusion: The aim of the present review is to provide an overview of recent approaches for the characterization of biopharmaceutical products in HPLC that have been presented in the literature in the last years.

Keywords: Analysis, biopharmaceuticals, chromatography, instrument configuration, international guidelines, RP-LC.

Graphical Abstract
[1]
Jozala, A.F.; Geraldes, D.C.; Tundisi, L.L.; Feitosa, V.A.; Breyer, C.A.; Cardoso, S.L.; Mazzola, P.G.; Oliveira-Nascimento, L.; Rangel-Yagui, C.O.; Magalhães, P.O.; Oliveira, M.A.; Pessoa, A., Jr Biopharmaceuticals from microorganisms: from production to purification. Braz. J. Microbiol., 2016, 47(Suppl. 1), 51-63.
[http://dx.doi.org/10.1016/j.bjm.2016.10.007] [PMID: 27838289]
[2]
Crommelin, D.J.A.; Storm, G.; Verrijk, R.; de Leede, L.; Jiskoot, W.; Hennink, W.E. Shifting paradigms: Biopharmaceuticals versus low molecular weight drugs. Int. J. Pharm., 2003, 266(1-2), 3-16.
[http://dx.doi.org/10.1016/S0378-5173(03)00376-4] [PMID: 14559389]
[3]
Tassi, M.; De Vos, J.; Chatterjee, S.; Sobott, F.; Bones, J.; Eeltink, S. Advances in native high-performance liquid chromatography and intact mass spectrometry for the characterization of biopharmaceutical products. J. Sep. Sci., 2018, 41(1), 125-144.
[http://dx.doi.org/10.1002/jssc.201700988] [PMID: 28990739]
[4]
Fekete, S.; Veuthey, J.L.; Guillarme, D. New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: Theory and applications. J. Pharm. Biomed. Anal., 2012, 69, 9-27.
[http://dx.doi.org/10.1016/j.jpba.2012.03.024] [PMID: 22475515]
[5]
Lowe, C.R.; Lowe, A.R.; Gupta, G. New developments in affinity chromatography with potential application in the production of biopharmaceuticals. J. Biochem. Biophys. Methods, 2001, 49(1-3), 561-574.
[http://dx.doi.org/10.1016/S0165-022X(01)00220-2] [PMID: 11694302]
[6]
Sandra, K.; Vandenheede, I.; Sandra, P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J. Chromatogr. A, 2014, 1335, 81-103.
[http://dx.doi.org/10.1016/j.chroma.2013.11.057] [PMID: 24365115]
[7]
Oliva, A.; Fariña, J.B.; Llabrés, M. New trends in analysis of biopharmaceutical products. Curr. Pharm. Anal., 2007, 3, 230-248.
[http://dx.doi.org/10.2174/157341207782418811]
[8]
Brusotti, G.; Calleri, E.; Colombo, R.; Massolini, G.; Rinaldi, F.; Temporini, C. Advances on size exclusion chromatography and applications on the analysis of protein biopharmaceuticals and protein aggregates: A mini review. Chromatographia, 2018, 81, 3-23.
[http://dx.doi.org/10.1007/s10337-017-3380-5]
[9]
Luykx, D.M.A.M.; Goerdayal, S.S.; Dingemanse, P.J.; Jiskoot, W.; Jongen, P.M.J.M. HPLC and tandem detection to monitor conformational properties of biopharmaceuticals. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 821(1), 45-52.
[http://dx.doi.org/10.1016/j.jchromb.2005.04.005] [PMID: 15897018]
[10]
Farnan, D.; Moreno, G.T. Multiproduct high-resolution monoclonal antibody charge variant separations by pH gradient ion-exchange chromatography. Anal. Chem., 2009, 81(21), 8846-8857.
[http://dx.doi.org/10.1021/ac901408j] [PMID: 19795895]
[11]
Rea, J.C.; Moreno, G.T.; Lou, Y.; Farnan, D. Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations. J. Pharm. Biomed. Anal., 2011, 54(2), 317-323.
[http://dx.doi.org/10.1016/j.jpba.2010.08.030] [PMID: 20884149]
[12]
Fekete, S.; Beck, A.; Fekete, J.; Guillarme, D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach. J. Pharm. Biomed. Anal., 2015, 102, 282-289.
[http://dx.doi.org/10.1016/j.jpba.2014.09.032] [PMID: 25459925]
[13]
Moorhouse, K.G.; Nashabeh, W.; Deveney, J.; Bjork, N.S.; Mulkerrin, M.G.; Ryskamp, T. Validation of an HPLC method for the analysis of the charge heterogeneity of the recombinant monoclonal antibody IDEC-C2B8 after papain digestion. J. Pharm. Biomed. Anal., 1997, 16(4), 593-603.
[http://dx.doi.org/10.1016/S0731-7085(97)00178-7] [PMID: 9502155]
[14]
Gjoka, X.; Schofield, M.; Cvetkovic, A.; Gantier, R. Combined Protein A and size exclusion high performance liquid chromatography for the single-step measurement of mAb, aggregates and host cell proteins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 972, 48-52.
[http://dx.doi.org/10.1016/j.jchromb.2014.09.017] [PMID: 25310707]
[15]
Gundinger, T.; Pansy, A.; Spadiut, O. A sensitive and robust HPLC method to quantify recombinant antibody fragments in E. coli crude cell lysate. J. Chromatog. B, 2018, 1083, 242-248.
[16]
Gervais, D.; Downer, A.; King, D.; Kanda, P.; Foote, N.; Smith, S. Robust quantitation of basic-protein higher-order aggregates using size-exclusion chromatography. J. Pharm. Biomed. Anal., 2017, 139, 215-220.
[http://dx.doi.org/10.1016/j.jpba.2017.03.004] [PMID: 28292680]
[17]
Loureiro, R.F.; de Oliveira, J.E.; Torjesen, P.A.; Bartolini, P.; Ribela, M.T.C.P. Analysis of intact human follicle-stimulating hormone preparations by reversed-phase high-performance liquid chromatography. J. Chromatogr. A, 2006, 1136(1), 10-18.
[http://dx.doi.org/10.1016/j.chroma.2006.09.037] [PMID: 17049544]
[18]
Almeida, B.E.; Oliveira, J.E.; Carvalho, C.M.; Dalmora, S.L.; Bartolini, P.; Ribela, M.T.C.P. Analysis of human luteinizing hormone and human chorionic gonadotropin preparations of different origins by reversed-phase high-performance liquid chromatography. J. Pharm. Biomed. Anal., 2010, 53(1), 90-97.
[http://dx.doi.org/10.1016/j.jpba.2010.03.013] [PMID: 20395104]
[19]
Girard, M.; Puerta, A.; Diez-Masa, J.C.; de Frutos, M. High resolution separation methods for the determination of intact human erythropoiesis stimulating agents. A review. Anal. Chim. Acta, 2012, 713, 7-22.
[http://dx.doi.org/10.1016/j.aca.2011.11.041] [PMID: 22200302]
[20]
Ferretto, R.M.; Leal, D.P.; Silva, L.M.; Dalmora, S.L. Validation of a size-exclusion LC method and assessment of rhEPO in pharmaceutical formulations by liquid chromatography and biological assay. J. Liq. Chromatogr., 2009, 32(10), 1392-1406.
[http://dx.doi.org/10.1080/10826070902900327]
[21]
Kim, J.H.; Shin, I.S.; Lee, Y.K.; Oh, H.J.; Ban, S.J. Improved HPLC method using 2,3-naphthalenedicarboxaldehyde as fluorescent labeling agent for quantification of histamine in human immunoglobulin preparations. Osong Public Health Res. Perspect., 2011, 2(2), 127-134.
[http://dx.doi.org/10.1016/j.phrp.2011.07.003] [PMID: 24159462]
[22]
Harazono, A.; Kobayashi, T.; Kawasaki, N.; Itoh, S.; Tada, M.; Hashii, N.; Ishii, A.; Arato, T.; Yanagihara, S.; Yagi, Y.; Koga, A.; Tsuda, Y.; Kimura, M.; Sakita, M.; Kitamura, S.; Yamaguchi, H.; Mimura, H.; Murata, Y.; Hamazume, Y.; Sato, T.; Natsuka, S.; Kakehi, K.; Kinoshita, M.; Watanabe, S.; Yamaguchi, T. A comparative study of monosaccharide composition analysis as a carbohydrate test for biopharmaceuticals. Biologicals, 2011, 39(3), 171-180.
[http://dx.doi.org/10.1016/j.biologicals.2011.04.002] [PMID: 21549615]
[23]
Sandra, K.; Sandra, P. The opportunities of 2D-LC in the analysis of monoclonal antibodies. Bioanalysis, 2015, 7(22), 2843-2847.
[http://dx.doi.org/10.4155/bio.15.210] [PMID: 26563949]
[24]
Washburn, N.; Meccariello, R.; Hu, S.; Hains, M.; Bhatnagar, N.; Sarvaiya, H.; Kapoor, B.; Schaeck, J.; Pino, I.; Manning, A.; Lansing, J.C.; Bosques, C.J. High-resolution physicochemical characterization of different intravenous immunoglobulin products. PLoS One, 2017, 12(7)e0181251
[http://dx.doi.org/10.1371/journal.pone.0181251] [PMID: 28759653]
[25]
Sandra, K.; Mortier, K.; Jorge, L.; Perez, L.C.; Sandra, P.; Priem, S.; Poelmans, S.; Bouche, M.P. LC-MS/MS quantification of next-generation biotherapeutics: a case study for an IgE binding Nanobody in cynomolgus monkey plasma. Bioanalysis, 2014, 6(9), 1201-1213.
[http://dx.doi.org/10.4155/bio.13.347] [PMID: 24946921]
[26]
Doneanu, C.E.; Xenopoulos, A.; Fadgen, K.; Murphy, J.; Skilton, S.J.; Prentice, H.; Stapels, M.; Chen, W. Analysis of host-cell proteins in biotherapeutic proteins by comprehensive online two-dimensional liquid chromatography/mass spectrometry. MAbs, 2012, 4(1), 24-44.
[http://dx.doi.org/10.4161/mabs.4.1.18748] [PMID: 22327428]
[27]
Stoll, D.R.; Harmes, D.C.; Danforth, J.; Wagner, E.; Guillarme, D.; Fekete, S.; Beck, A. Direct identification of rituximab main isoforms and subunit analysis by online selective comprehensive two-dimensional liquid chromatography-mass spectrometry. Anal. Chem., 2015, 87(16), 8307-8315.
[http://dx.doi.org/10.1021/acs.analchem.5b01578] [PMID: 26145446]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy