Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Development of Synchrotron Footprinting at NSLS and NSLS-II

Author(s): Jen Bohon*

Volume 26, Issue 1, 2019

Page: [55 - 60] Pages: 6

DOI: 10.2174/0929866526666181128125125

Price: $65

Abstract

Background: First developed in the 1990’s at the National Synchrotron Light Source, xray synchrotron footprinting is an ideal technique for the analysis of solution-state structure and dynamics of macromolecules. Hydroxyl radicals generated in aqueous samples by intense x-ray beams serve as fine probes of solvent accessibility, rapidly and irreversibly reacting with solvent exposed residues to provide a “snapshot” of the sample state at the time of exposure. Over the last few decades, improvements in instrumentation to expand the technology have continuously pushed the boundaries of biological systems that can be studied using the technique.

Conclusion: Dedicated synchrotron beamlines provide important resources for examining fundamental biological mechanisms of folding, ligand binding, catalysis, transcription, translation, and macromolecular assembly. The legacy of synchrotron footprinting at NSLS has led to significant improvement in our understanding of many biological systems, from identifying key structural components in enzymes and transporters to in vivo studies of ribosome assembly. This work continues at the XFP (17-BM) beamline at NSLS-II and facilities at ALS, which are currently accepting proposals for use.

Keywords: Synchrotron, footprinting, x-ray, beamline, radiolysis, NSLS, NSLS-II, XFP.

Graphical Abstract
[1]
Ralston, C.Y.; Sclavi, B.; Sullivan, M.; Deras, M.L.; Woodson, S.A.; Chance, M.R.; Brenowitz, M. Time-resolved synchroton X-ray footprinting and its application to RNA folding. Methods Enzymol., 2000, 317, 353-368.
[2]
Xu, G.; Chance, M.R. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev., 2007, 107, 3514-3543.
[3]
Bohon, J.; Jennings, L.D.; Phillips, C.; Licht, S.; Chance, M.R. Synchrotron protein footprinting supports substrate translocation by ClpA via ATP-induced movements of the D2 loop. Structure, 2008, 16, 1157-1165.
[4]
Deperalta, G.; Alvarez, M.; Bechtel, C.; Dong, K.; McDonald, R.; Ling, V. Structural analysis of a therapeutic monoclonal antibody dimer by hydroxyl radical footprinting. MAbs, 2013, 7, 86-101.
[5]
Gupta, S.; Bavro, V.; D’Mello, R.; Tucker, S.J.; Vénien-Bryan, C.; Chance, M.R. Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure, 2010, 18, 839-846.
[6]
Kamal, J.K.A.; Chance, M.R. Modeling of protein binary complexes using structural mass spectrometry data. Protein Sci., 2008, 17, 79-94.
[7]
Huang, W.; Ravikumar, K.M.; Chance, M.R.; Yang, S. Quantitative mapping of protein structure by hydroxyl radical footprinting-mediated structural mass spectrometry: A protection factor analysis. Biophys. J., 2015, 108(1), 107-115.
[8]
Xie, B.; Sood, A.; Woods, R.J.; Sharp, J. Quantitative protein topography measurements by high resolution hydroxyl radical protein footprinting enable accurate molecular model selection. Sci. Rep., 2017, 7, 4552.
[9]
Orban, T.; Jastrzebska, B.; Gupta, S.; Wang, B.; Miyagi, M.; Chance, M.R.; Palczewski, K. Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Structure, 2012, 20, 826-840.
[10]
Leverenz, R.L.; Sutter, M.; Wilson, A.; Gupta, S.; Thurotte, A.; Bourcier de Carbon, C.; Petzold, C.J.; Ralston, C.; Perreau, F.; Kirilovsky, D.; Kerfeld, C.A.A. 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science, 2015, 348, 1463-1466.
[11]
Sclavi, B.; Woodson, S.; Sullivan, M.; Chance, M.R.; Brenowitz, M. Time-resolved Synchrotron X-ray “Footprinting”, a new approach to the study of nucleic acid structure and function: Application to protein-DNA interactions and RNA folding. J. Mol. Biol., 1997, 266, 144-159.
[12]
Adilakshmi, T.; Bellur, D.T.; Woodson, S.A. Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature, 2008, 455, 1268-1272.
[13]
Gupta, S.; D’Mello, R.; Chance, M.R. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry. Proc. Natl. Acad. Sci. USA, 2012, 109, 14882-14887.
[14]
Angel, T.E.; Gupta, S.; Jastrzebska, B.; Palczewski, K.; Chance, M.R. Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proc. Natl. Acad. Sci. USA, 2009, 106, 14367-14372.
[15]
Adilakshmi, T.; Lease, R.; Woodson, S.A. Hydroxyl radical footprinting in vivo: Mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res., 2006, 34(8), e64.
[16]
Soper, S.F.C.; Dator, R.P.; Limbach, P.A.; Woodson, S.A. In Vivo X-Ray footprinting of Pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol. Cell, 2013, 52, 506-516.
[17]
Bohon, J.; D’Mello, R.; Ralston, C.; Gupta, S.; Chance, M.R. Synchrotron X-ray footprinting on tour. J. Synchrotron Radiat., 2014, 21, 24-31.
[18]
Sclavi, B.; Sullivan, M.; Chance, M.R.; Brenowitz, M.; Woodson, S. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science, 1998, 279, 1940-1943.
[19]
Maleknia, S.D.; Brenowitz, M.; Chance, M.R. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem., 1999, 71, 3965-3973.
[20]
Kiselar, J.; Janmey, P.A.; Almo, S.C.; Chance, M.R. Visualizing the Ca2+-dependent activation of gelsolin by using synchrotron footprinting. Proc. Natl. Acad. Sci. USA, 2003, 100, 3942-3947.
[21]
Gupta, S.; Cheng, H.; Mollah, A.K.M.M.; Jamison, E.; Morris, S.; Chance, M.R.; Khrapunov, S.; Brenowitz, M. DNA and protein footprinting analysis of the modulation of DNA binding by the N-terminal domain of the Saccharomyces cerevisiae TATA binding protein. Biochemistry, 2007, 46, 9886-9898.
[22]
Gupta, S.; Mangel, W.; McGrath, W.J.; Perek, J.L.; Lee, D.W.; Takamoto, K.; Chance, M.R. DNA binding provides a molecular strap activating the adenovirus proteinase. Mol. Cell. Proteomics, 2004, 3(10), 950-959.
[23]
Gupta, S.; Sullivan, M.; Toomey, J.; Kiselar, J.; Chance, M.R. The Beamline X28C of the center for synchrotron biosciences: A national resource for biomolecular structure and dynamics experiments using synchrotron footprinting. J. Synchrotron Radiat., 2007, 14, 233-243.
[24]
Sullivan, M.; Rekhi, S.; Bohon, J.; Gupta, S.; Abel, D.; Toomey, J.; Chance, M.R. Installation and testing of a focusing mirror at beamline X28C for high flux x-ray radiolysis of biological macromolecules. Rev. Sci. Instrum., 2008, 79, 025101.
[25]
Gupta, S.; Chai, J.; Cheng, J.; D’Mello, R.; Chance, M.R.; Fu, D. Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport. Nature, 2014, 512, 101-104.
[26]
Jennings, L.D.; Bohon, J.; Chance, M.R.; Licht, S. The ClpP N-terminus coordinates substrate access with protease active site reactivity. Biochemistry, 2008, 47, 11031-11040.
[27]
Hulscher, R.M.; Bohon, J.; Rappé, M.; Gupta, S.; D’Mello, R.; Sullivan, M.; Ralston, C.Y.; Chance, M.R.; Woodson, S.A. Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting. Methods, 2016, 103, 49-56.
[28]
Gupta, S.; Celestre, R.; Petzold, C.J.; Chance, M.R.; Ralston, C. Development of a microsecond X-ray protein footprinting facility at the advanced light source. J. Synchrotron Radiat., 2014, 21, 690-699.
[29]
Bohon, J.; Sullivan, M.; Dvorak, J.; Abel, D.; Toomey, J.; Chance, M.R. Development of the XFP beamline for x-ray footprinting at NSLS-II. AIP Conf. Proc., 2016, 1741, 030005.
[30]
Zhou, T.; Ding, W.; Gaowei, M.; De Geronimo, G.; Bohon, J.; Smedley, J.; Muller, E. Pixelated transmission-mode diamond X-ray detector. J. Synchrotron Radiat., 2015, 22, 1396-1402.
[31]
National Synchrotron Light Source II User Guide.. www.bnl.gov/ps/userguide (Accessed July 30, 2017).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy