Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

Chronic Obstructive Pulmonary Disease and Respiratory Acidosis in the Intensive Care Unit

Author(s): Yamely Mendez*, Francisco E. Ochoa-Martinez and Tatiana Ambrosii

Volume 15, Issue 2, 2019

Page: [79 - 89] Pages: 11

DOI: 10.2174/1573398X15666181127141410

Abstract

Chronic obstructive lung disease is a common and preventable disease. One of its pathophysiological consequences is the presence of carbon dioxide retention due to hypoventilation and ventilation/perfusion mismatch, which in consequence will cause a decrease in the acid/base status of the patient. Whenever a patient develops an acute exacerbation, acute respiratory hypercapnic failure will appear and the necessity of a hospital ward is a must. However, current guidelines exist to better identify these patients and make an accurate diagnosis by using clinical skills and laboratory data such as arterial blood gases. Once the patient is identified, rapid treatment will help to diminish the hospital length and the avoidance of intensive care unit. On the other hand, if there is the existence of comorbidities such as cardiac failure, gastroesophageal reflux disease, pulmonary embolism or depression, it is likely that the patient will be admitted to the intensive care unit with the requirement of intubation and mechanical ventilation.

Keywords: Acid-base disorder, carbon-dioxide, chronic bronchitis, chronic obstructive pulmonary disease, COPD, emphysema, hypercapnia, respiratory acidosis.

« Previous
Graphical Abstract
[1]
Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Respirology 2017; 22(3): 575-601.
[2]
WHO. Top 10 causes of death [Internet]. WHO. Available from: http://www.who.int/gho/mortality_burden_disease/causes_death/top_10/en/ [cited 2018 May 29].
[3]
Chronic obstructive pulmonary disease (COPD) [Internet]. World Health Organization. Available from: http://www.who.int/news-room/fact-sheets/detail/chronic-obstructivepulmonary-disease-(copd) cited 2018 May 29].
[4]
Poon C-S, Tin C, Song G. Submissive hypercapnia: Why COPD patients are more prone to CO2 retention than heart failure patients. Respir Physiol Neurobiol 2015; 216: 86-93.
[5]
Edwards SL. Pathophysiology of acid base balance: The theory practice relationship. Intensive Crit Care Nurs 2008; 24(1): 28-40.
[6]
Ismail TS. Exacerbation of chronic obstructive pulmonary disease. Med J Malaysia 2009; 64(3): 250-6.
[7]
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3(11) e442
[8]
Johannesdottir SA, Christiansen CF, Johansen MB, et al. Hospitalization with acute exacerbation of chronic obstructive pulmonary disease and associated health resource utilization: A population-based Danish cohort study. J Med Econ 2013; 16(7): 897-906.
[9]
Smith M, Wrobel J. Epidemiology and clinical impact of major comorbidities in patients with COPD. Int J Chron Obstruct Pulmon Dis 2014; 9: 871-88.
[10]
Burgel P-R, Nesme-Meyer P, Chanez P, et al. Cough and sputum production are associated with frequent exacerbations and hospitalizations in COPD subjects. Chest 2009; 135(4): 975-82.
[11]
Kim V, Han MK, Vance GB, et al. The Chronic Bronchitic Phenotype of COPD. Chest 2011; 140(3): 626-33.
[12]
García-Sanz MT, Cánive-Gómez JC, Senín-Rial L, et al. One-year and long-term mortality in patients hospitalized for chronic obstructive pulmonary disease. J Thorac Dis 2017; 9(3): 636-45.
[13]
Ho TW, Tsai YJ, Ruan SY, et al. In-hospital and one-year mortality and their predictors in patients hospitalized for first-ever chronic obstructive pulmonary disease exacerbations: a nationwide population-based study. PLoS One 2014; 9(12) e114866
[14]
Batzlaff CM, Karpman C, Afessa B, Benzo RP. Predicting 1-year mortality rate for patients admitted with an acute exacerbation of chronic obstructive pulmonary disease to an intensive care unit: An opportunity for palliative care. Mayo Clin Proc 2014; 89(5): 638-43.
[15]
Singanayagam A, Schembri S, Chalmers JD. Predictors of mortality in hospitalized adults with acute exacerbation of chronic obstructive pulmonary disease. A systematic review and meta-analysis. Ann Am Thorac Soc 2013; 10(2): 81-9.
[16]
Steer J, Gibson J, Bourke SC. The DECAF Score: Predicting hospital mortality in exacerbations of chronic obstructive pulmonary disease. Thorax 2012; 67(11): 970-6.
[17]
Roberts CM, Lowe D, Bucknall CE, Ryland I, Kelly Y, Pearson MG. Clinical audit indicators of outcome following admission to hospital with acute exacerbation of chronic obstructive pulmonary disease. Thorax 2002; 57(2): 137-41.
[18]
Steer J, Gibson GJ, Bourke SC. Predicting outcomes following hospitalization for acute exacerbations of COPD. QJM 2010; 103(11): 817-29.
[19]
Gungor S, Kargin F, Irmak I, et al. Severity of acidosis affects long-term survival in COPD patients with hypoxemia after intensive care unit discharge. Int J Chron Obstruct Pulmon Dis 2018; (13): 1495-506.
[20]
Edwards SL. Shock: Types, classifications and exploration of their physiological effects. Emerg Nurse 2001; 9(2): 29-38.
[21]
Hall JE. Acid-Base regulation.In: Guyton and Hall textbook of medical physiology. 13th edition. United States of America: Saunders 2016; pp. 409-26.
[22]
Skatrud JB, Dempsey JA, Bhansali P, Irvin C. Determinants of chronic carbon dioxide retention and its correction in humans. JCI 1980; 65(4): 813-21.
[23]
Hajian B, De Backer J, Vos W, et al. Changes in ventilation-perfusion during and after an COPD exacerbation: An assessment using fluid dynamic modeling. Int J Chron Obstruct Pulmon Dis 2018; (13): 833-42.
[24]
Behnia M, Wheatley C, Avolio A, Johnson B. Alveolar-capillary reserve during exercise in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2017; (12): 3115-22.
[25]
Mazzoccoli G, de Matthaeis A, Greco A, et al. Effects of hypercapnia on peripheral vascular reactivity in elderly patients with acute exacerbation of chronic obstructive pulmonary disease. Clin Interv Aging 2014; (9): 871-8.
[26]
Gonzalez RN, Morel Vulliez GG, De Vito EL. Influence of FIO2 on PaCO2 in COPD patients with chronic CO2 retention. Resp Care 2014; 59(7): e105-6.
[27]
Rialp G, Raurich JM, Llompart-Pou JA, Ayestaran I. Role of respiratory drive in hyperoxia-induced hypercapnia in ready-to-wean subjects with COPD. Respir Care 2015; 60(3): 328-34.
[28]
Schlichtig R, Grogono AW, Severinghaus JW. Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med 1998; 26: 1173-9.
[29]
Bruno CM, Valenti M. Acid-Base disorders in patients with chronic obstructive pulmonary disease: A pathophysiological review. J Biomed Biotechnol 2012; 2012: 1-8.
[30]
Westlake EK, Simpson T, Kaye M. Carbon dioxide narcosis in emphysema. Q J Med 1955; 24(94): 155-73.
[31]
Turovsky E, Theparambil SM, Kasymov V, et al. Mechanisms of CO 2 /H + Sensitivity of Astrocytes. J Neurosci 2016; 36(42): 10750-8.
[32]
Du Bose TD. Acidosis and Alkalosis. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J, Eds. Harrison’s Principles of Internal Medicine. New York: The McGraw Hill Companies 18th ed 2012; pp. 363-73.
[33]
Oliven A, Kelsen SG, Deal EC, Cherniack NS. Mechanisms underlying CO2 retention during flow-resistive loading in patients with chronic obstructive pulmonary disease. J Clin Invest 1983; 71(5): 1442-9.
[34]
Scano G, Spinelli A, Duranti R, et al. Carbon dioxide responsiveness in COPD patients with and without chronic hypercapnia. Eur Respir J 1995; 8(1): 78-85.
[35]
Poon CS. Effects of inspiratory elastic load on respiratory control in hypercapnia and exercise. J Appl Physiol 1989; 66: 2400-6.
[36]
Raherison C, Girodet PO. Epidemiology of COPD. Euro Resp Rev 2009; 18(114): 213-21.
[37]
Randerath WJ, Stieglitz S, Galetke W, Anduleit N, Treml M, Schafer T. Evaluation of a system for transcutaneous long-term capnometry. Respiration 2010; 80(2): 139-45.
[38]
van de Ven MJT, Colier WNJM, van der Sluijs MC, Kersten BTP, Oeseburg B, Folgering H. Ventilatory and cerebrovascular responses in normocapnic and hypercapnic COPD patients. Eur Respir J 2001; 18(1): 61-8.
[39]
Oliver KM, Lenihan CR, Bruning U, et al. Hypercapnia induces cleavage and nuclear localization of RElb protein, giving insight into CO2 sensing and signaling. J Biol Chem 2012; 287(17): 14004-11.
[40]
Marhong J, Fan E. Carbon Dioxide in the Critically Ill: Too much or too little of a good thing? Resp Care 2014; 59(10): 1597-605.
[41]
Ogino H, Nishimura N, Yamano Y, et al. Analysis of the clinical backgrounds of patients who developed respiratory acidosis under high-flow oxygen therapy during emergency transport: Respiratory acidosis during emergency transport. Acute Med Surg 2016; 3(1): 26-31.
[42]
Jones NL. Respiratory acidosis sans acidemia. Can Respir J 2003; 10(6): 301-3.
[43]
Berend K, de Vries APJ, Gans ROB. Physiological approach to assessment of acid-base disturbances. NEJM 2014; 371(15): 1434-45.
[44]
Gold Reports. 2018. [Internet]. Global Initiative for Chronic Obstructive Lung Disease - GOLD. Available from:http://goldcopd.org/gold-reports/ [cited 2018 May 31].
[45]
Adrogué HJ. Diagnosis and management of severe respiratory acidosis: A 65-year-old man with a double-lung transplant and shortness of breath. Am J Kidney Dis 2010; 56(5): 994-1000.
[46]
Garcia-Pachon E, Padilla-Navas I. Frequency of Hoover’s sign in stable patients with chronic obstructive pulmonary disease. Int J Clin Pract 2006; 60: 514-7.
[47]
National Institute for Clinical Excellence (NICE). Chronic obstructive pulmonary disease. National clinical guideline on management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax 2004; 59(Suppl. 1): 1-232.
[48]
Langley G, Canada T, Day L. Acid-base disorders and nutrition support treatment. Nutr Clin Pract 2003; 18(3): 259-61.
[49]
Ayers P, Warrington L. Diagnosis and treatment of simple acid-base disorders. Nutr Clin Pract 2008; 23(2): 122-7.
[50]
Platts MM, Greaves MS. Arterial blood gas measurements in the management of patients with chronic bronchitis and emphysema. Thorax 1957; 12(3): 236-40.
[51]
Zavorsky GS, Cao J, Mayo NE, Gabbay R, Murias JM. Arterial versus capillary blood gases: A meta-analysis. Respir Physiol Neurobiol 2007; 155(3): 268-79.
[52]
Stieglitz S, Matthes S, Priegnitz C, Hagmeyer L, Randerath W. Comparison of transcutaneous and capillary measurement of PCO2 in hypercapnic subjects. Respir Care 2016; 61(1): 98-105.
[53]
Rees SE, Rychwicka-Kielek BA, Andersen BF, et al. Calculating acid-base and oxygenation status during COPD exacerbation using mathematically arterialised venous blood. Clin Chem Lab Med 2012; 50(12): 2149-54.
[54]
Tygesen G, Matzen H, Grønkjær K, et al. Mathematical arterialization of venous blood in emergency medicine patients. Eur J Emerg Med 2012; 19(6): 363-72.
[55]
Scott MG, LeGrys VA, Klutts JS. In: Burtis CA, Ashwood ER, Bruns DE, Eds. Electrolytes and Blood Gases. Tietz textbook of clinical chemistry and molecular diagnostics. St. Louis: Elsevier Saunders 2006; 4th ed 983-1018
[56]
Sathe AB. Undisplayed bicarbonate ion concentration in arterial blood gas analysis. J Clin Diagn Res 2013; 7(12): 2945-6.
[57]
van Geffen WH, Kerstjens H. Static and dynamic hyperinflation during severe acute exacerbations of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2018; 13: 1269-77.
[58]
Pellegrino R, Crimi E, Gobbi A, et al. Severity grading of chronic obstructive pulmonary disease: the confounding effect of phenotype and thoracic gas compression. J Appl Physiol 2015; 118(7): 796-802.
[59]
Fernández-Villar A, Represas-Represas C, Mouronte-Roibás C, et al. Reliability and usefulness of spirometry performed during admission for COPD exacerbation. PLOS One 2018; 13(3)e0194983
[60]
Brulotte CA, Lang ES. Acute exacerbations of chronic obstructive pulmonary disease in the emergency department. Emerg Med Clin North Am 2012; 30(2): 223-47.
[61]
Emerman C, Cydulka R. Evaluation of high-yield criteria for chest radiography in acute exacerbation of chronic obstructive pulmonary disease. Ann Emerg Med 1993; 22: 680-4.
[62]
Ahmet Demircan, Özgür Karcıoğlu, Sedat Yanturali, et al. Role of chest radiography in the management of patients with chest pain and dyspnea in the emergency department. Turk J Emerg Med 2006; 6(2): 60-5.
[63]
Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005; 60(11): 925-31.
[64]
Boixeda R, Bacca S, Elias L, et al. Pneumonia as Comorbidity in Chronic Obstructive Pulmonary Disease (COPD). Differences between acute exacerbation of COPD and pneumonia in patients with COPD. Arch Bronconeumol (English Edition) 2014; 50(12): 514-20.
[65]
Terzano C, Romani S, Conti V, Paone G, Oriolo F, Vitarelli A. Atrial fibrillation in the acute, hypercapnic exacerbations of COPD. Eur Rev Med Pharmacol Sci 2014; 18: 2908-17.
[66]
Corlateanu A, Covantev S, Mathioudakis AG, Botnaru V, Siafakas N. Prevalence and burden of comorbidities in Chronic Obstructive Pulmonary Disease. Respir Invest 2016; 54(6): 387-96.
[67]
Arostegui I, Esteban C, García-Gutierrez S, et al. Subtypes of patients experiencing exacerbations of COPD and associations with outcomes. PLoS ONE 2014; 9(6) e98580
[68]
Pooler A, Beech R. Examining the relationship between anxiety and depression and exacerbations of COPD which result in hospital admission: A systematic review. Int J Chron Obstruct Pulmon Dis 2014; 9: 315-30.
[69]
Gruffydd-Jones K, Loveridge C. The 2010 NICE COPD Guidelines: How do they compare with the GOLD guidelines? Prim Care Respir J 2011; 20(2): 199-204.
[70]
McCauley P, Datta D. Management of COPD patients in the intensive care unit. Crit Care Nurs Clin N Am 2012; 24(3): 419-30.
[71]
Tzanakis Nikos N, Fotis P, Hillas G. Acute exacerbation of COPD: Is it the “stroke of the lungs”? Int J Chron Obstruct Pulmon Dis 2016; 11: 1579-86.
[72]
Sundh J, Efraimsson EÖ, Janson C, Montgomery S, Staällberg B, Lisspers K. Management of COPD exacerbations in primary care: A clinical cohort study. Prim Care Respir J 2013; 22(4): 393-9.
[73]
Dalal AA, Shah M, D’Souza AO, Rane P. Costs of COPD exacerbations in the emergency department and inpatient setting. Respir Med 2011; 105(3): 454-60.
[74]
Ford ES, Murphy LB, Khavjou O, Giles WH, Holt JB, Croft JB. Total and State-Specific Medical and Absenteeism Costs of COPD Among Adults Aged 18 Years in the United States for 2010 and Projections Through 2020. Chest 2015; 147(1): 31-45.
[75]
Greenstone M. Management of acute exacerbations of chronic obstructive pulmonary disease: The first 24 hours. Clin Med 2010; 10(1): 65-57.
[76]
Jeffrey AA, Warren PM, Flenley DC. Acute hypercapnic respiratory failure in patients with chronic obstructive lung disease: Risk factors and use of guidelines for management. Thorax 1992; 47(1): 34-40.
[77]
Massaro DJ, Katz S, Luchsinger PC. Effect of various modes of oxygen administration on the arterial gas values in patients with respiratory acidosis. BMJ 1962; 2(5305): 627-9.
[78]
Hutchison DCS, Flenley DC, Donald KW. Controlled Oxygen Therapy in Respiratory Failure. BMJ 1964; 2(5418): 1159-66.
[79]
Herren T, Achermann E, Hegi T, Reber A, Stäubli M. Carbon dioxide narcosis due to inappropriate oxygen delivery: A case report. J Med Case Rep 2017; 11(1): 204.
[80]
Fricke K, Tatkov S, Domanski U, Franke K-J, Nilius G, Schneider H. Nasal high flow reduces hypercapnia by clearance of anatomical dead space in a COPD patient. Respir Med Case Rep 2016; 19: 115-7.
[81]
Calverley PMA. Respiratory failure in chronic obstructive pulmonary disease. Eur Respir J 2003; 22(Supplement. 47): 26s-30s.
[82]
Kim ES, Lee H, Kim SJ, et al. Effectiveness of high-flow nasal cannula oxygen therapy for acute respiratory failure with hypercapnia. J Thorac Dis 2018; 10(2): 882-8.
[83]
Brederlau J, Wurmb T, Wilczek S, et al. Extracorporeal lung assist might avoid invasive ventilation in exacerbation of COPD. Eur Respir J 2012; 40(3): 783-5.
[84]
Muellenbach RM, Kredel M, Wunder C, et al. Arteriovenous extracorporeal lung assists as integral part of a multimodal treatment concept: a retrospective analysis of 22 patients with ARDS refractory to standard care. Eur J Anaesthesiol 2008; 25: 897-904.
[85]
Elliot SC, Paramasivam K, Oram J, et al. Pumpless extracorporeal carbon dioxide removal for life-threatening asthma. Crit Care Med 2007; 35: 945-8.
[86]
Kluge S, Braune SA, Engel M, et al. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med 2012; 38(10): 1632-9.
[87]
Lund LW, Federspiel WJ. Removing extra CO2 in COPD patients. Curr Respir Care Rep 2013; 2(3): 131-8.
[88]
Del Sorbo L, Pisani L, Filippini C, et al. Extracorporeal CO2 removal in hypercapnic patients at risk of noninvasive ventilation failure: A matched cohort study with historical control. Crit Care Med 2015; 43(1): 120-7.
[89]
Braune S, Sieweke A, Brettner F, et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): Multicentre case-control study. Intensive Care Med 2016; 42(9): 1437-44.
[90]
Sklar MC, Beloncle F, Katsios CM, Brochard L, Friedrich JO. Extracorporeal carbon dioxide removal in patients with chronic obstructive pulmonary disease: A systematic review. Intensive Care Med 2015; 41(10): 1752-62.
[91]
Karagiannidis C, Brodie D, Strassmann S, et al. Extracorporeal membrane oxygenation: Evolving epidemiology and mortality. Intensive Care Med 2016; 42(5): 889-96.
[92]
Karagiannidis C, Strassmann S, Brodie D, et al. Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis. ICMx 2017; 5(1): 1-13.
[93]
May AG, Sen A, Cove ME, Kellum JA, Federspiel WJ. Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility. ICMx 2017; 5(1): 1-9.
[94]
Lindberg A, Szalai Z, Pullerits T, Radeczky E. Fast onset of effect of budesonide/formoterol versus salmeterol/ fluticasone and salbutamol in patients with chronic obstructive pulmonary disease and reversible airway obstruction. Respirology 2007; 12: 732-9.
[95]
Blais L, Forget A, Ramachandran S. Relative effectiveness of budesonide/formoterol and fluticasone propionate/salmeterol in a 1-year, population-based, matched cohort study of patients with chronic obstructive pulmonary disease (COPD): Effect on COPD-related exacerbations, emergency department visits and hospitalizations, medication utilization, and treatment adherence. Clin Ther 2010; 32(7): 1320-8.
[96]
Fernandes FLA, Cukier A, Camelier AA, et al. Recommendations for the pharmacological treatment of COPD: Questions and answers. Jor Bral Pneumol 2017; 43(4): 290-301.
[97]
Angulo M, Taranto E, Soto JP, et al. Salbutamol improves diaphragmatic contractility in chronic airway obstruction Arch Bronconeumol ((English Edition)) 2009; 45(5): 230-4 2009.
[98]
Du Q, Sun Y, Ding N, Lu L, Chen Y. Beta-blockers reduced the risk of mortality and exacerbation in patients with COPD: A meta-analysis of observational studies. PLoS One 2014; 9(11)e113048
[99]
Addis GJ. Bicarbonate Buffering in acute exacerbation of chronic respiratory failure. Thorax 1965; 20(4): 337-40.
[100]
Budweiser S. Treatment of respiratory failure in COPD. Int J Chron Obstruct Pulmon Dis 2008; 3(4): 605-18.
[101]
Lemyze M, Bury Q, Guiot A, et al. Delayed but successful response to noninvasive ventilation in COPD patients with acute hypercapnic respiratory failure. Int J Chron Obstruct Pulmon Dis 2017; (12): 1539-47.
[102]
Masa JF, Utrabo I, Gomez de Terreros J, et al. Noninvasive ventilation for severely acidotic patients in respiratory intermediate care units: Precision medicine in intermediate care units. BMC Pulm Med 2016; 16(1): 97.
[103]
Moxon A, Lee G. Non-invasive ventilation in the emergency department for patients in type II respiratory failure due to COPD exacerbations. International Emerg Nurs 2015; 23(3): 232-6.
[104]
Crummy F, Buchan C, Miller B, Toghill J, Naughton MT. The use of noninvasive mechanical ventilation in COPD with severe hypercapnic acidosis. Respir Med 2007; 101(1): 53-61.
[105]
Terzano C, Di Stefano F, Conti V, et al. Mixed acid-base disorders, hydroelectrolyte imbalance and lactate production in hypercapnic respiratory failure: The role of noninvasive ventilation. PLoS One 2012; 7(4) e35245
[106]
Roberts CM, Stone RA, Buckingham RJ, Pursey NA, Lowe D. On behalf of the National Chronic Obstructive Pulmonary Disease Resources and Outcomes Project (NCROP) implementation group. Acidosis, non-invasive ventilation and mortality in hospitalized COPD exacerbations. Thorax 2011; 66(1): 43-8.
[107]
Dave C, Turner A, Thomas A, et al. Utility of respiratory ward-based NIV in acidotic hypercapnic respiratory failure: Ward-based NIV in respiratory failure. Respirology 2014; 19(8): 1241-7.
[108]
Mandal S, Howes TQ, Parker M, Roberts CM. The use of a prospective audit proforma to improve door-to-mask times for acute exacerbations Chronic Obstructive Pulmonary Disease (COPD) requiring Non-Invasive Ventilation (NIV). COPD 2014; 11(6): 645-51.
[109]
Bellone A, Spagnolatti L, Massobrio M, et al. Short-term effects of expiration under positive pressure in patients with acute exacerbation of chronic obstructive pulmonary disease and mild acidosis requiring non-invasive positive pressure ventilation. Intensive Care Med 2002; 28(5): 581-5.
[110]
Ko BS, Ahn S, Lim KS, Kim WY, Lee Y-S, Lee JH. Early failure of noninvasive ventilation in chronic obstructive pulmonary disease with acute hypercapnic respiratory failure. Intern Emerg Med 2015; 10(7): 855-60.
[111]
Ambrosino N, Vagheggini G. Non-invasive ventilation in exacerbations of COPD. Int J Chron Obstruct Pulmon Dis 2007; 2(4): 471-6.
[112]
Gadre SK, Duggal A, Mireles-Cabodevila E, et al. Acute respiratory failure requiring mechanical ventilation in severe Chronic Obstructive Pulmonary Disease (COPD). Medicine 2018; 97(17) e0487
[113]
Liu H, Zhang T, Ye J. Determinants of prolonged mechanical ventilation in patients with chronic obstructive pulmonary diseases and acute hypercapnic respiratory failure. Eur J Intern Med 2007; 18(7): 542-7.
[114]
Tiruvoipati R, Pilcher D, Buscher H, Botha J, Bailey M. Effects of hypercapnia and hypercapnic acidosis on hospital mortality in mechanically ventilated patients. Crit Care Med 2017; 45(7): e649-56.
[115]
Ucgun I, Metintas M, Moral H, Alatas F, Yildirim H, Erginel S. Predictors of hospital outcome and intubation in COPD patients admitted to the respiratory ICU for acute hypercapnic respiratory failure. Respir Med 2006; 100(1): 66-74.
[116]
Kargin F, Irmak I, Çiyiltepe F, et al. Chronic obstructive pulmonary disease admitted to an intensive care unit because of acute respiratory failure: How do severity of acidosis effect short and long-term mortality? Eur Respir J 2016; 48(suppl 60).PA3060
[http://dx.doi.org/10.1183/13993003.congress-2016.PA3060]
[117]
Murray LT, Leidy NK. The Short-term impact of symptom-defined COPD exacerbation recovery on health status and lung function. chronic obstructive pulmonary diseases. Chronic Obstr Pulm Dis 2018; 5(1): 27-37.

© 2024 Bentham Science Publishers | Privacy Policy