Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Novel Benzo[B]Furans with Anti-Microtubule Activity Upregulate Expression of Apoptotic Genes and Arrest Leukemia Cells in G2/M Phase

Author(s): Karolina Królewska-Golińska, Marcin J. Cieślak*, Milena Sobczak, Rafał Dolot, Ewa Radzikowska-Cieciura, Mariola Napiórkowska, Iwona Wybrańska and Barbara Nawrot

Volume 19, Issue 3, 2019

Page: [375 - 388] Pages: 14

DOI: 10.2174/1871520619666181122123552

Price: $65

Abstract

Background: Novel derivatives of benzo[b]furan were found to be highly toxic towards human chronic myelogenous (K562), acute myelogenous (HL-60) and acute lymphoblastic (MOLT-4) leukemia cells.

Objective: The objective was the characterization of the biological activity of novel benzofurans (influence on apoptosis, mitogen-activated protein kinases and on the cell cycle). Cellular protein(s) targeted by test benzofurans and mechanism of action were identified.

Methods: The methods utilized in the study were chemical synthesis, fluorescence assays, flow cytometry, gene expression by DNA microarray and real-time RT-PCR, western blotting, cytotoxicity assays, pull-down assay, mass spectroscopy, in vitro polymerization of tubulin, molecular docking.

Results: 1,1'-[3-(bromomethyl)-5,6- dimethoxy-1-benzofuran-2,7-diyldiethanone (1) and methyl 4-bromo-6- (dibromoacetyl)-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate (2) induced apoptosis in K562 and MOLT-4 cells. The profiling of gene expression revealed that 1 and 2 increased the expression of proapoptotic genes involved in both receptor (TNFRSF 10A, TNFRSF 10B, CASP8) and mitochondrial (BAX, BID, NOXA, APAF1) pathways of apoptosis. Test benzo[b]furans activated c-Jun N-terminal kinase (JNK) and p38 kinase in K562 cells. Tubulin was identified as a protein target for benzo[b]furans in pull-down experiments with biotinylated 2. Test benzo[b]furans inhibited polymerization of tubulin monomers in vitro, decreased the level of cellular microtubules and arrested cells in a G2/M phase. Molecular docking suggests that benzo[b]furans 1 and 2 bind to tubulin via colchicine binding pocket and the complex is stabilized mainly by hydrophobic interactions.

Conclusion: Novel benzo[b]furans with anti-microtubule activity were identified. They induce apoptosis in cancer cells and cause G2/M cell cycle arrest. Biological activity of 1 and 2 makes them potential lead compounds for development as anticancer drugs.

Keywords: Apoptosis, benzofurans, microtubules, antineoplastic agents, leukemia, molecular docking, novel benzo[b]furans.

Graphical Abstract
[1]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[2]
Fan, Y.; Bergmann, A. Apoptosis-induced compensatory proliferation. The cell is dead. Long live the cell. Trends Cell Biol., 2008, 18(10), 467-473.
[3]
Rajesh, P.; Rastogi, R.; Rajeshwar, P.S. Apoptosis: molecular mechanism and pathogenicity. EXCLI J., 2009, 8, 155-181.
[4]
Cotter, T.G. Apoptosis and cancer: The genesis of a research field. Nat. Rev. Cancer, 2009, 9(7), 501-507.
[5]
Broker, L.E.; Kruyt, F.A.; Giaccone, G. Cell death independent of caspases: A review. Clin. Cancer Res., 2005, 11(9), 3155-3162.
[6]
Riedl, S.J.; Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol., 2004, 5(11), 897-907.
[7]
Bohnenstengel, F.I.; Steube, K.G.; Meyer, C.; Quentmeier, H.; Nugroho, B.W.; Proksch, P. 1H-cyclopenta[b]benzofuran lignans from Aglaia species inhibit cell proliferation and alter cell distribution in human monocytic leukemia cell lines. Z. Naturforsch, 1999, 54(12), 1075-1083.
[8]
Bourgery, G.; Dostert, P.; Lacour, A.; Langlois, M.; Pourrias, B.; Tisne-Versailles, J. Synthesis and antiarrhythmic activity of new benzofuran derivatives. J. Med. Chem., 1981, 24, 159-167.
[9]
Kossakowski, J.; Krawiecka, M.; Kuran, B.; Stefańska, J.; Wolska, I. Synthesis and preliminary evaluation of the antimicrobial activity of selected 3-Benzofurancarboxylic acid derivative. Molecules, 2010, 15(7), 4737-4749.
[10]
Courchesne, W.E. Characterization of novel, broad-based fungicidal activity for antiarrhythmic drug amiodarone. J. Pharmacol. Exp. Ther., 2002, 300(1), 195-199.
[11]
Gerard, B.; Jones, G.; Porco, J.A. A biomimetic approach to the rocaglamides employing photogeneration of oxidopyryliums derived from 3-hydroxyflavones. J. Am. Chem. Soc., 2004, 126, 13620-13621.
[12]
Tsai, I.L.; Hsieh, C.H.F.; Duht, C.Y. Additional cytotoxic neolignans from Persea obovatifolia. Phytochemistry, 1998, 48, 1371-1375.
[13]
Cencic, R.; Carrier, M.; Galicia-Va´zquez, G.; Bordeleau, M.E.; Sukarieh, R.; Bourdeau, A.; Brem, B.; Teodoro, J.G.; Greger, H.; Tremblay, M.; Porco, J.; Pelletier, J. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran silvestrol. PLoS One, 2009, 4(4), 5223 e1-14.
[14]
Katsanou, E.S.; Halabalaki, M.; Aligiannis, N.; Mitakou, S.; Skaltsounis, A.L.; Xanthippi, A.; Pratsinis, H.; Alexis, A.N. Cytotoxic effects of 2-arylbenzofuran phytoestrogens on human cancer cells: Modulation by adrenal and gonadal steroids. J. Steroid Bioch. Mol. Biol., 2007, 104, 228-236.
[15]
Yang, H.; Pang, J.Y.; Cai, Y.C.; Xu, Z.; Xian, L.L.J. Cytotoxic activity and cytostatic mechanism of novel 2-arylbenzo[b]furans. J. Pharm. Pharmacol., 2006, 58(9), 1281-1287.
[16]
Pieters, L.; Van Dyck, S.; Gao, M.; Bai, R.; Hamel, E.; Lemière, G. Synthesis and biological evaluation of dihydrobenzofuran lignans and related compounds as potential antitumor agents that inhibit tubulin polymerization. J. Med. Chem., 1999, 42, 5475-5481.
[17]
Hayakawa, I.; Shiota, R.; Agatsuma, T.; Furukawa, H.; Naruto, S.; Sugano, Y. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents. Bioorg. Med. Chem. Lett., 2004, 14(2), 455-458.
[18]
Kuran, B.; Krawiecka, M.; Kossakowski, J.; Pindel, Ł.; Młynarczyk, G.; Cieślak, M.; Kaźmierczak-Barańska, J.; Królewska, K. Synthesis and biological activity of a novel series of 6,7-dimethoxyquinazoline-2,4(1H,3H)-dione derivatives. Acta Pol. Pharm., 2012, 69(1), 145-148.
[19]
Krawiecka, M.; Kuran, B.; Kossakowski, J.; Kierzkowska, M.; Młynarczyk, G.; Cieślak, M.; Kaźmierczak-Barańska, J.; Królewska, K.; Dobrowolski, M.A. Synthesis and biological activity of novel series of 1,3-benzoxazol-2(3h)-one derivatives. Acta Pol. Pharm., 2013, 70, 245-253.
[20]
Krawiecka, M.; Kuran, B.; Kossakowski, J.; Kierzkowska, M.; Młynarczyk, G.; Kaźmierczak-Barańska, J.; Królewska, K.; Cieślak, M. Synthesis and biological activity of 6-substituted 5-acetyl-4,7-dimethoxybenzofuran derivatives. Heterocyc. Commun., 2013, 1, 281-286.
[21]
Krawiecka, M.; Kuran, B.; Kossakowski, J.; Cieślak, M.; Kazmierczak-Baranska, J.; Królewska, K.; Nawrot, B. Synthesis and cytotoxic properties of halogen and aryl-heteroarylpiperazinyl derivatives of benzofurans. Anti-Cancer. Agents Med. Chem., 2015, 15(1), 115-121.
[22]
Kossakowski, J.; Kuran, B.; Kazmierczak-Baranska, J.; Królewska, K.; Nawrot, B.; Krawiecka, M.; Cieslak, M. Halogen derivatives of benzo[b]furans useful as anti-neoplastic or anti-proliferative drugs. EP Patent 131,506,115, 2013.
[23]
Kuran, B.; Krawiecka, M.; Kossakowski, J.; Cieslak, M.; Kazmierczak-Baranska, J.; Królewska, K.; Nawrot, B. Dicarboximides derivatives for use in the treatment of cancer. EP Patent 13176421.9, 2013.
[24]
Santa María, D.; Claramunt, R.; Herranz, F.; Alkorta, I.; Elguero, J. A theoretical and experimental NMR study of (+)-biotin methyl ester. J. Mol. Struct., 2009, 920(1), 323-326.
[25]
Maszewska, M.; Leclaire, J.; Cieslak, M.; Nawrot, B.; Okruszek, A.; Caminade, A.M.; Majoral, J.P. Water-soluble polycationic dendrimers with a phosphoramidothioate backbone: preliminary studies of cytotoxicity and oligonucleotide/plasmid delivery in human cell culture. Oligonucleotides, 2003, 13(4), 193-205.
[26]
Dhanik, A.; McMurray, J.; Kavraki, L.E. DINC: A new AutoDock-based protocol for docking large ligands. BMC Struct. Biol., 2013, 13(Suppl. 1), S11.
[27]
Prota, A.E.; Danel, F.; Bachmann, F.; Bargsten, K.; Buey, R.M.; Pohlmann, J.; Reinelt, S.; Lane, H.; Steinmetz, M.O. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J. Mol. Biol., 2014, 426(8), 1848-1860.
[28]
Lebedev, A.A.; Young, P.; Isupov, M.N.; Moroz, O.V.; Vagin, A.A.; Murshudov, G.N. Ligand: A graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(Pt 4), 431-440.
[29]
Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.; McCoy, A.; McNicholas, S.J.; Murshudov, G.N.; Pannu, N.S.; Potterton, E.A.; Powell, H.R.; Read, R.J.; Vagin, A.; Wilson, K.S. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr., 2011, 67(Pt 4), 235-242.
[30]
Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; McCoy, A.J.; Moriarty, N.W.; Oeffner, R.; Read, R.J.; Richardson, D.C.; Richardson, J.S.; Terwilliger, T.C.; Zwart, P.H. PHENIX: A comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr., 2010, 66, 213-221.
[31]
DeLano, W.L. PyMOL Molecular Graphics System. 2002 DeLano Scientific, San Carlos, CA.
[32]
Eisenberg, D.; Schwarz, E.; Komarony, M.; Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol., 1984, 179(1), 125-142.
[33]
Nazha, A.; Kantarjian, H.; Ravandi, F.; Huang, X.; Choi, S.; Garcia-Manero, G.; Jabbour, E.; Borthakur, G.; Kadia, T.; Konopleva, M.; Cortes, J.; Ferrajoli, A.; Kornblau, S.; Daver, N.; Pemmaraju, N.; Andreeff, M.; Estrov, Z.; Du, M.; Brandt, M.; Faderl, S. Clofarabine, idarubicin, and cytarabine (CIA) as frontline therapy for patients ≤60 years with newly diagnosed acute myeloid leukemia. Am. J. Hematol., 2013, 88(11), 961-966.
[34]
Hranjec, M.; Sovic, I.; Ratkaj, I.; Pavlovic, G.; Ilic, N.; Valjalo, L.; Pavelic, K.; Pavelic, S.K.; Zamola, G.K. Antiproliferative potency of novel benzofuran-2-carboxamides on tumour cell lines: cell death mechanisms and determination of crystal structure. Eur. J. Med. Chem., 2013, 59, 111-119.
[35]
Liu, J.F.; Chen, C.Y.; Chen, H.T.; Chang, C.S.; Tang, C.H. BL-038, a benzofuran derivative, induces cell apoptosis in human chondrosarcoma cells through reactive oxygen species/mitochondrial dysfunction and the caspases dependent pathway. Int. J. Mol. Sci., 2016, 17(9), 1491.
[36]
Su, C.M.; Chen, C.Y.; Lu, T.; Sun, Y.; Li, W.; Huang, Y.L.; Tsai, C.H.; Chang, C.S.; Tang, C. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress. Oncotarget, 2016, 7(50), 83530-83543.
[37]
Nakamura-Lopez, Y.; Sarmiento-Silva, R.E.; Moran-Andrade, J.; Gomez-Garcia, B. Staurosporine-induced apoptosis in P388D1 macrophages involves both extrinsic and intrinsic pathways. Cell Biol., 2009, 33(9), 1026-1031.
[38]
Dong, Zhang. X.; Gillespie, S.K.; Hersey, P. Staurosporine induces apoptosis of melanoma by both caspase-dependent and -independent apoptotic pathways. Mol. Cancer Ther., 2004, 3, 187-197.
[39]
Yvon, A.M.C.; Wadsworth, P.; Jordan, M.A. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell, 1999, 10(4), 947-959.
[40]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Cruz-Lopez, O.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Pipitone, M.R.; Balzarini, J.; Zonta, N.; Brancale, A.; Hamel, E. Design, synthesis and structure-activity relationship of 2-(3′,4′,5′-trimethoxybenzoyl)-benzo[b]furan derivatives as a novel class of inhibitors of tubulin polymerization. Bioorg. Med. Chem., 2009, 17(19), 6862-6871.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy