Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Utility of Molecular Imaging with 2-Deoxy-2-[Fluorine-18] Fluoro-D-Glucose Positron Emission Tomography (18F-FDG PET) for Small Cell Lung Cancer (SCLC): A Radiation Oncology Perspective

Author(s): Omer Sager*, Ferrat Dincoglan, Selcuk Demiral, Bora Uysal, Hakan Gamsiz, Yelda Elcim, Esin Gundem, Bahar Dirican and Murat Beyzadeoglu

Volume 12, Issue 1, 2019

Page: [4 - 10] Pages: 7

DOI: 10.2174/1874471012666181120162434

Price: $65

Abstract

Background and Objective: Although accounting for a relatively small proportion of all lung cancers, small cell lung cancer (SCLC) remains to be a global health concern with grim prognosis. Radiotherapy (RT) plays a central role in SCLC management either as a curative or palliative therapeutic strategy. There has been considerable progress in RT of SCLC, thanks to improved imaging techniques leading to accurate target localization for precise delivery of RT. Positron emission tomography (PET) is increasingly used in oncology practice as a non-invasive molecular imaging modality.

Methods: Herein, we review the utility of molecular imaging with 2-deoxy-2-[fluorine-18] fluoro-Dglucose PET (18F-FDG PET) for SCLC from a radiation oncology perspective.

Results: There has been extensive research on the utility of PET for SCLC in terms of improved staging, restaging, treatment designation, patient selection for curative/palliative intent, target localization, response assessment, detection of residual/recurrent disease, and prediction of treatment outcomes.

Conclusion: PET provides useful functional information as a non-invasive molecular imaging modality and may be exploited to improve the management of patients with SCLC. Incorporation of PET/CT in staging of patients with SCLC may aid in optimal treatment allocation for an improved therapeutic ratio. From a radiation oncology perspective, combination of functional and anatomical data provided by integrated PET/CT improves discrimination between atelectasis and tumor, and assists in the designation of RT portals with its high accuracy to detect intrathoracic tumor and nodal disease. Utility of molecular imaging for SCLC should be further investigated in prospective randomized trials to acquire a higher level of evidence for future potential applications of PET.

Keywords: Small cell lung cancer (SCLC), positron emission tomography (PET), computed tomography (CT), PET/CT, 2- deoxy-2-[fluorine-18]fluoro-D-glucose PET, 18F-FDG PET/CT.

Graphical Abstract
[1]
Zelen, M. Keynote address on biostatistics and data retrieval. Cancer Chemother. Rep. 3, 1973, 4, 31-42.
[2]
Shepherd, F.A.; Crowley, J.; Van Houtte, P.; Postmus, P.E.; Carney, D.; Chansky, K.; Shaikh, Z.; Goldstraw, P. International Association for the Study of Lung Cancer International Staging Committee and Participating Institutions. The International Association for the Study of Lung Cancer lung cancer staging project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J. Thorac. Oncol., 2007, 2, 1067-1077.
[3]
Albain, K.S.; Crowley, J.J.; Livingston, R.B. Long-term survival and toxicity in small cell lung cancer. Expanded Southwest Oncology Group experience. Chest, 1991, 99, 1425-1432.
[4]
Lassen, U.; Osterlind, K.; Hansen, M.; Dombernowsky, P.; Bergman, B.; Hansen, H.H. Long-term survival in small-cell lung cancer: posttreatment characteristics in patients surviving 5 to 18+ years--an analysis of 1,714 consecutive patients. J. Clin. Oncol., 1995, 13, 1215-1220.
[5]
Zhong, Y.; Zhang, Q.; Deng, W.; Zhang, Y.; Ming, Z.; Hou, Y.; Niu, Z.; Yang, S. Long-term survival for 93 months of limited-stage small cell lung cancer: A case report and literature review. Thorac. Cancer, 2014, 5, 349-353.
[6]
Tartarone, A.; Lerose, R.; Ardito, R.; Troiani, L.; Tedesco, B.; Bozza, G.; Cangiano, R.; Aieta, M. Long-term survival in small cell lung cancer: a case report and review of the literature. Future Oncol., 2014, 10, 523-528.
[7]
Glatzer, M.; Schmid, S.; Radovic, M.; Früh, M.; Putora, P.M. The role of radiation therapy in the management of small cell lung cancer. Breathe (Sheff.), 2017, 13, e87-e94.
[8]
Carter, B.W.; Glisson, B.S.; Truong, M.T.; Erasmus, J.J. Small cell lung carcinoma: staging, imaging, and treatment considerations. Radiographics, 2014, 34, 1707-1721.
[9]
Nosaki, K.; Seto, T. The role of radiotherapy in the treatment of small-cell lung cancer. Curr. Treat. Options Oncol., 2015, 16, 56.
[10]
Vorster, M.; Doruyter, A.; Brink, A.; Mkhize, S.; Holness, J.; Malan, N.; Nyakale, N.; Warwick, J.M.; Sathekge, M. College of Nuclear Physicians of South Africa. Appropriate indications for positron emission tomography/computed tomography, 2015. S. Afr. Med. J., 2015, 106, 105-122.
[11]
Fischer, B.M.; Mortensen, J. The future in diagnosis and staging of lung cancer: positron emission tomography. Respiration, 2006, 73, 267-276.
[12]
Sager, O.; Dincoglan, F.; Gamsiz, H.; Demiral, S.; Uysal, B.; Surenkok, S.; Oysul, K.; Arslan, N.; Beyzadeoglu, M. Evaluation of the impact of integrated [18f]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging on staging and radiotherapy treatment volume definition of non-small cell lung cancer. Gulhane Med. J., 2012, 54, 220-227.
[13]
Thomson, D.; Hulse, P.; Lorigan, P.; Faivre-Finn, C. The role of positron emission tomography in management of small cell lung cancer. Lung Cancer, 2011, 73, 121-126.
[14]
Behzadi, A.; Ung, Y.; Lowe, V.; Deschamps, C. The role of positron emission tomography in the management of non-small cell lung cancer. Can. J. Surg., 2009, 52, 235-242.
[15]
Fay, M.; Poole, C.M.; Pratt, G. Recent advances in radiotherapy for thoracic tumours. J. Thorac. Dis., 2013, 5(Suppl. 5), S551-S555.
[16]
Ruben, J.D.; Ball, D.L. The efficacy of PET staging for small-cell lung cancer: a systematic review and cost analysis in the Australian setting. J. Thorac. Oncol., 2012, 7, 1015-1020.
[17]
Sohn, B.S.; Lee, D.H.; Kim, E.K.; Yoon, D.H.; Kim, H.O.; Ryu, J.S.; Kim, S.W.; Suh, C. The role of integrated 18F-FDG PET-CT as a staging tool for limited-stage small cell lung cancer: a retrospective study. Onkologie, 2012, 35, 432-438.
[18]
Ulger, S.; Demirci, N.Y.; Aydinkarahaliloglu, E.; Kahraman, F.C.; Ozmen, O.; Erdogan, Y.; Cetin, E.; Avci, E.; Cengiz, M. PET-CT guided curative conformal radiation therapy in limited stage small cell lung cancer. J. Thorac. Dis., 2015, 7, 295-302.
[19]
Bradley, J.D.; Dehdashti, F.; Mintun, M.A.; Govindan, R.; Trinkaus, K.; Siegel, B.A. Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. J. Clin. Oncol., 2004, 22, 3248-3254.
[20]
Blum, R.; MacManus, M.P.; Rischin, D.; Michael, M.; Ball, D.; Hicks, R.J. Impact of positron emission tomography on the management of patients with small-cell lung cancer: preliminary experience. Am. J. Clin. Oncol., 2004, 27, 164-171.
[21]
Senan, S.; De Ruysscher, D. Critical review of PET-CT for radiotherapy planning in lung cancer. Crit. Rev. Oncol. Hematol., 2005, 56, 345-351.
[22]
Xanthopoulos, E.P.; Corradetti, M.N.; Mitra, N.; Fernandes, A.T.; Kim, M.; Grover, S.; Christodouleas, J.P.; Evans, T.L.; Stevenson, J.P.; Langer, C.J.; Lee, T.T.; Pryma, D.A.; Lin, L.L.; Simone, C.B., 2nd; Apisarnthanarax, S.; Rengan, R. Impact of PET staging in limited-stage small-cell lung cancer. J. Thorac. Oncol., 2013, 8, 899-905.
[23]
Ong, L.T.; Dunphy, M.; Foster, A.; Woo, K.M.; Zhang, Z.; Perez, C.A.; Pietanza, C.M.; Rosenzweig, K.E.; Gelblum, D.Y.; Rimner, A.; Wu, A.J. Prognostic Value of Preradiotherapy (18)F-FDG PET/CT Volumetrics in Limited-Stage Small-Cell Lung Cancer. Clin. Lung Cancer, 2016, 17, 184-188.
[24]
Gomez, D.R.; Gladish, G.W.; Wei, X.; Kotamarti, K.R.; Allen, P.K.; Cox, J.D.; O’Reilly, M.S.; Erasmus, J.J.; Fossella, F.V.; Komaki, R. Prognostic value of positron emission tomography/computed tomography findings in limited-stage small cell lung cancer before chemoradiation therapy. Am. J. Clin. Oncol., 2014, 37, 77-80.
[25]
Lee, J.; Kim, J.O.; Jung, C.K.; Kim, Y.S.; Yoo, IeR.; Choi, W.H.; Jeon, E.K.; Hong, S.H.; Chun, S.H.; Kim, S.J.; Kim, Y.K.; Kang, J.H. Metabolic activity on [18f]-fluorodeoxyglucose-positron emission tomography/computed tomography and glucose transporter-1 expression might predict clinical outcomes in patients with limited disease small-cell lung cancer who receive concurrent chemoradiation. Clin. Lung Cancer, 2014, 15, e13-e21.
[26]
Ambrosini, V.; Nicolini, S.; Caroli, P.; Nanni, C.; Massaro, A.; Marzola, M.C.; Rubello, D.; Fanti, S. PET/CT imaging in different types of lung cancer: an overview. Eur. J. Radiol., 2012, 81, 988-1001.
[27]
Mena, E.; Yanamadala, A.; Cheng, G.; Subramaniam, R.M. The Current and Evolving Role of PET in Personalized Management of Lung Cancer. PET Clin., 2016, 11, 243-259.
[28]
Kalemkerian, G.P.; Gadgeel, S.M. Modern staging of small cell lung cancer. J. Natl. Compr. Canc. Netw., 2013, 11, 99-104.
[29]
Budak, E.; Çok, G.; Akgün, A. the contribution of fluorine 18f-fdg pet/ct to lung cancer diagnosis, staging and treatment planning. Mol. Imaging Radionucl. Ther., 2018, 27, 73-80.
[30]
Ziai, D.; Wagner, T.; El Badaoui, A.; Hitzel, A.; Woillard, J.B.; Melloni, B.; Monteil, J. Therapy response evaluation with FDG-PET/CT in small cell lung cancer: a prognostic and comparison study of the PERCIST and EORTC criteria. Cancer Imaging, 2013, 13, 73-80.
[31]
Pandit, N.; Gonen, M.; Krug, L.; Larson, S.M. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30, 78-84.
[32]
Turrisi, A.T., 3rd; Kim, K.; Blum, R.; Sause, W.T.; Livingston, R.B.; Komaki, R.; Wagner, H.; Aisner, S.; Johnson, D.H. Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N. Engl. J. Med., 1999, 340, 265-271.
[33]
Faivre-Finn, C.; Snee, M.; Ashcroft, L.; Appel, W.; Barlesi, F.; Bhatnagar, A.; Bezjak, A.; Cardenal, F.; Fournel, P.; Harden, S.; Le Pechoux, C.; McMenemin, R.; Mohammed, N.; O’Brien, M.; Pantarotto, J.; Surmont, V.; Van Meerbeeck, J.P.; Woll, P.J.; Lorigan, P.; Blackhall, F. CONVERT Study Team. Concurrent once-daily versus twice-daily chemoradiotherapy in patients with limited-stage small-cell lung cancer (CONVERT): an open-label, phase 3, randomised, superiority trial. Lancet Oncol., 2017, 18, 1116-1125.
[34]
Shen, Y.Y.; Shiau, Y.C.; Wang, J.J.; Ho, S.T.; Kao, C.H. Whole-body 18F-2- deoxyglucose positron emission tomography in primary staging small cell lung cancer. Anticancer Res., 2002, 22, 1257-1264.
[35]
Azad, A.; Chionh, F.; Scott, A.M.; Lee, S.T.; Berlangieri, S.U.; White, S.; Mitchell, P.L. High impact of 18F-FDG-PET on management and prognostic stratification of newly diagnosed small cell lung cancer. Mol. Imaging Biol., 2010, 12, 443-451.
[36]
Arslan, N.; Tuncel, M.; Kuzhan, O.; Alagoz, E.; Budakoglu, B.; Ozet, A.; Ozguven, M.A. Evaluation of outcome prediction and disease extension by quantitative 2-deoxy-2-[18F] fluoro-D-glucose with positron emission tomography in patients with small cell lung cancer. Ann. Nucl. Med., 2011, 25, 406-413.
[37]
Brink, I.; Schumacher, T.; Mix, M.; Ruhland, S.; Stoelben, E.; Digel, W.; Henke, M.; Ghanem, N.; Moser, E.; Nitzsche, E.U. Impact of [18F]FDG-PET on the primary staging of small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31, 1614-1620.
[38]
Fischer, B.M.; Mortensen, J.; Langer, S.W.; Loft, A.; Berthelsen, A.K.; Petersen, B.I.; Daugaard, G.; Lassen, U.; Hansen, H.H. A prospective study of PET/CT in initial staging of small-cell lung cancer: comparison with CT, bone scintigraphy and bone marrow analysis. Ann. Oncol., 2007, 18, 338-345.
[39]
Feinstein, A.R.; Sosin, D.M.; Wells, C.K. The Will Rogers phenomenon. Stage migration and new diagnostic techniques as a source of misleading statistics for survival in cancer. N. Engl. J. Med., 1985, 312, 1604-1608.
[40]
Gao, G.; Gong, B.; Shen, W. Meta-analysis of the additional value of integrated 18FDG PET-CT for tumor distant metastasis staging: comparison with 18FDG PEt alone and CT alone. Surg. Oncol., 2013, 22, 195-200.
[41]
Giuliani, M.E.; Lindsay, P.E.; Kwan, J.Y.; Sun, A.; Bezjak, A.; Le, L.W.; Brade, A.; Cho, J.; Leighl, N.B.; Shepherd, F.A.; Hope, A.J. Correlation of dosimetric and clinical factors with the development of esophagitis and radiation pneumonitis in patients with limited-stage small-cell lung carcinoma. Clin. Lung Cancer, 2015, 16, 216-220.
[42]
MacManus, M.; Everitt, S. Treatment Planning for Radiation Therapy. PET Clin., 2018, 13, 43-57.
[43]
Yuan, S.; Sun, X.; Li, M.; Yu, J.; Ren, R.; Yu, Y.; Li, J.; Liu, X.; Wang, R.; Li, B.; Kong, L.; Yin, Y. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III nonsmall cell lung cancer. Am. J. Clin. Oncol., 2007, 30, 239-244.
[44]
Li, R.; Yu, L.; Lin, S.; Wang, L.; Dong, X.; Yu, L.; Li, W.; Li, B. Involved field radiotherapy (IFRT) versus elective nodal irradiation (ENI) for locally advanced non-small cell lung cancer: a meta-analysis of incidence of elective nodal failure (ENF). Radiat. Oncol., 2016, 11, 124.
[45]
De Ruysscher, D.; Bremer, R.H.; Koppe, F.; Wanders, S.; van Haren, E.; Hochstenbag, M.; Geeraedts, W.; Pitz, C.; Simons, J.; ten Velde, G.; Dohmen, J.; Snoep, G.; Boersma, L.; Verschueren, T.; van Baardwijk, A.; Dehing, C.; Pijls, M.; Minken, A.; Lambin, P. Omission of elective node irradiation on basis of CT-scans in patients with limited disease small cell lung cancer: a phase II trial. Radiother. Oncol., 2006, 80, 307-312.
[46]
van Loon, J.; De Ruysscher, D.; Wanders, R.; Boersma, L.; Simons, J.; Oellers, M.; Dingemans, A.M.; Hochstenbag, M.; Bootsma, G.; Geraedts, W.; Pitz, C.; Teule, J.; Rhami, A.; Thimister, W.; Snoep, G.; Dehing-Oberije, C.; Lambin, P. Selective nodal irradiation on basis of (18)FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int. J. Radiat. Oncol. Biol. Phys., 2010, 77, 329-336.
[47]
Shirvani, S.M.; Komaki, R.; Heymach, J.V.; Fossella, F.V.; Chang, J.Y. Positron emission tomography/computed tomography-guided intensity-modulated radiotherapy for limited-stage small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2012, 82, e91-e97.
[48]
Bütof, R.; Gumina, C.; Valentini, C.; Sommerer, A.; Appold, S.; Zips, D.; Löck, S.; Baumann, M.; Troost, E.G.C. Sites of recurrent disease and prognostic factors in SCLC patients treated with radiochemotherapy. Clin. Transl. Radiat. Oncol., 2017, 7, 36-42.
[49]
Inoue, M.; Nakagawa, K.; Fujiwara, K.; Fukuhara, K.; Yasumitsu, T. Results of preoperative mediastinoscopy for small cell lung cancer. Ann. Thorac. Surg., 2000, 70, 1620-1623.
[50]
Sakai, M.; Ishikawa, S.; Yamamoto, T.; Onizuka, M.; Sakakibara, Y.; Iijima, T.; Noguchi, M. Preoperative TNM evaluation of peripheral clinical stage I small cell lung cancer treated by initial lobectomy with adjuvant chemotherapy. Interact. Cardiovasc. Thorac. Surg., 2005, 4, 118-122.
[51]
Van Den Berg, N.S.; Buckle, T.; Kleinjan, G.I.; Klop, W.M.; Horenblas, S.; Van Der Poel, H.G.; Valdés-Olmos, R.A.; Van Leeuwen, F.I. Hybrid tracers for sentinel node biopsy. Q. J. Nucl. Med. Mol. Imaging, 2014, 58, 193-206.
[52]
Yamamoto, Y.; Kameyama, R.; Murota, M.; Bandoh, S.; Ishii, T.; Nishiyama, Y. Early assessment of therapeutic response using FDG PET in small cell lung cancer. Mol. Imaging Biol., 2009, 11, 467-472.
[53]
Fischer, B.M.; Mortensen, J.; Langer, S.W.; Loft, A.; Berthelsen, A.K.; Daugaard, G.; Lassen, U.; Hansen, H.H. PET/CT imaging in response evaluation of patients with small cell lung cancer. Lung Cancer, 2006, 54, 41-49.
[54]
Shields, A.F.; Mankoff, D.A.; Link, J.M.; Graham, M.M.; Eary, J.F.; Kozawa, S.M.; Zheng, M.; Lewellen, B.; Lewellen, T.K.; Grierson, J.R.; Krohn, K.A. Carbon-11-thymidine and FDG to measure therapy response. J. Nucl. Med., 1998, 39, 1757-1762.
[55]
Satoh, H.; Ohtsuka, M. PET/CT imaging in response evaluation of SCLC patients. Lung Cancer, 2007, 55, 123-124.
[56]
Schumacher, T.; Brink, I.; Mix, M.; Reinhardt, M.; Herget, G.; Digel, W.; Henke, M.; Moser, E.; Nitzsche, E. FDG-PET imaging for the staging and follow-up of small cell lung cancer. Eur. J. Nucl. Med., 2001, 28, 483-488.
[57]
Kamel, E.M.; Zwahlen, D.; Wyss, M.T.; Stumpe, K.D.; von Schulthess, G.K.; Steinert, H.C. Whole-body (18)F-FDG PET improves the management of patients with small cell lung cancer. J. Nucl. Med., 2003, 44, 1911-1917.
[58]
Ghaye, B.; Wanet, M.; El Hajjam, M. Imaging after radiation therapy of thoracic tumors. Diagn. Interv. Imaging, 2016, 97, 1037-1052.
[59]
Ulaner, G.A.; Lyall, A. Identifying and distinguishing treatment effects and complications from malignancy at FDG PET/CT. Radiographics, 2013, 33, 1817-1834.
[60]
Lee, Y.J.; Cho, A.; Cho, B.C.; Yun, M.; Kim, S.K.; Chang, J.; Moon, J.W.; Park, I.K.; Choi, H.J.; Kim, J.H. High tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limited and extensive stage small-cell lung cancer. Clin. Cancer Res., 2009, 15, 2426-2432.
[61]
van Loon, J.; Offermann, C.; Ollers, M.; van Elmpt, W.; Vegt, E.; Rahmy, A.; Dingemans, A.M.; Lambin, P.; De Ruysscher, D. Early CT and FDG-metabolic tumour volume changes show a significant correlation with survival in stage I-III small cell lung cancer: a hypothesis generating study. Radiother. Oncol., 2011, 99, 172-175.
[62]
Aktan, M.; Koc, M.; Kanyilmaz, G.; Yavuz, B.B. Prognostic value of pre-treatment 18F-FDG-PET uptake in small-cell lung cancer. Ann. Nucl. Med., 2017, 31, 462-468.
[63]
Oh, J.R.; Seo, J.H.; Hong, C.M.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Min, J.J.; Song, H.C.; Bom, H.S.; Kim, Y.C.; Ahn, B.C. Extra-thoracic tumor burden but not thoracic tumor burden on (18)F-FDG PET/CT is an independent prognostic biomarker for extensive-disease small cell lung cancer. Lung Cancer, 2013, 81, 218-225.
[64]
Shvarts, O.; Han, K.R.; Seltzer, M.; Pantuck, A.J.; Belldegrun, A.S. Positron emission tomography in urologic oncology. Cancer Control., 2002, 9, 335-342.
[65]
Rohren, E.M.; Provenzale, J.M.; Barboriak, D.P.; Coleman, R.E. Screening for cerebral metastases with FDG PET in patients undergoing whole-body staging of non-central nervous system malignancy. Radiology, 2003, 226, 181-187.
[66]
Lee, H.Y.; Chung, J.K.; Jeong, J.M.; Lee, D.S.; Kim, D.G.; Jung, H.W.; Lee, M.C. Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer. Ann. Nucl. Med., 2008, 22, 281-286.
[67]
Dittmann, H.; Dohmen, B.M.; Paulsen, F.; Eichhorn, K.; Eschmann, S.M.; Horger, M.; Wehrmann, M.; Machulla, H.J.; Bares, R. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30, 1407-1412.
[68]
Caroli, P.; Nanni, C.; Rubello, D.; Alavi, A.; Fanti, S. Non-FDG PET in the practice of oncology. Indian J. Cancer, 2010, 47, 120-125.
[69]
Sharma, P.; Mukherjee, A. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: An overview. Ann. Transl. Med., 2016, 4, 53.
[70]
Palumbo, B.; Buresta, T.; Nuvoli, S.; Spanu, A.; Schillaci, O.; Fravolini, M.L.; Palumbo, I. SPECT and PET serve as molecular imaging techniques and in vivo biomarkers for brain metastases. Int. J. Mol. Sci., 2014, 15, 9878-9893.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy