Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Mechanistic and Kinetic Study of Atmospheric Oxidation of Chlordane Initiated by OH Radicals

Author(s): Zhezheng Ding, Yayi Yi, Fei Xu, Qingzhu Zhang, Xiaoli Xu* and Wenxing Wang

Volume 16, Issue 8, 2019

Page: [647 - 655] Pages: 9

DOI: 10.2174/1570178615666181106125208

Price: $65

Abstract

Chlordane, one of the extremely hazardous Persistent Organic Pollutants (POPs), was widely used as pesticides all over the world and its residues have been detected at high concentrations in many areas. As a species of Semi-Volatile Organic Compounds (SVOCs), chlordane exists mainly in the atmosphere where it can be migrated and transformed. Due to the carcinogenic and mutagenic properties, understanding its atmospheric fate is of great significance. In the present work, the oxidation mechanism of chlordane initiated by OH radicals under the atmospheric conditions was investigated by using Density Functional Theory (DFT). The geometrical structures were optimized at the M06- 2X/6-311+g(d,p) level and single-point energies were calculated at the M06-2X/6-311+g(3df,2p) level. The relevant rate constants of the key elementary reactions were calculated by using Rice-Ramsperger- Kassel-Marcus (RRKM) theory at 298 K and 1 atm. All of the energetically favorable pathways were discussed in detail, and theoretical results showed that the oxidation products are dichlorochlordene, hydroxychlrodane, cycloketone and dichloracyl. Combined with available experimental observation, this study can, therefore, help to clarify the atmospheric fate of chlordane.

Keywords: Chlordane, OH radicals, atmospheric oxidation, reaction mechanism, rate constants, POPs.

Graphical Abstract
[1]
Syed, J.H.; Malik, R.N.; Liu, D.; Xu, Y.; Wang, Y.; Li, J.; Zhang, G.; Jones, K.C. Sci. Total Environ., 2013, 444, 491-497.
[2]
Mattina, M.J.I.; Iannucci-Berger, W.; Dykas, L. J. Agric. Food Chem., 2000, 48, 1909-1915.
[3]
Wang, D.; Wang, X.; Zhang, P.; Wang, Y.; Zhang, R.; Yan, J.; Zhou, Z.; Zhu, W. Environ. Pollut., 2017, 222, 532-542.
[4]
Jaward, T.M.; Zhang, G.; Nam, J.J.; Sweetman, A.J.; Obbard, J.P.; Kobara, Y.; Jones, K.C. Environ. Sci. Technol., 2005, 39, 8638-8645.
[5]
Shen, L.; Wania, F.; Lei, Y.D.; Teixeira, C.; Muir, D.C.G.; Bidleman, T.F. Environ. Sci. Technol., 2005, 39, 409-420.
[6]
Liu, X.; Zhang, G.; Li, J.; Yu, L-L.; Xu, Y.; Li, X-D.; Kobara, Y.; Jones, K.C. Environ. Sci. Technol., 2009, 43, 1316-1321.
[7]
Scheringer, M. Environ. Toxicol. Chem., 2009, 28, 677-690.
[8]
Wu, X.; Lam, J.C.W.; Xia, C.; Kang, H.; Xie, Z.; Lam, P.K.S. Atmos. Environ., 2011, 45, 3750-3757.
[9]
Zhu, X.; Jia, C. J. Environ. Monit., 2012, 14, 1926-1934.
[10]
Parada, H.; Wolff, M.S.; Engel, L.S.; White, A.J.; Eng, S.M.; Cleveland, R.J.; Khankari, N.K.; Teitelbaum, S.L.; Neugut, A.I.; Gammon, M.D. Int. J. Cancer, 2016, 138, 565-575.
[11]
Stout, D.M.; Bradham, K.D.; Egeghy, P.P.; Jones, P.A.; Croghan, C.W.; Ashley, P.A.; Pinzer, E.; Friedman, W.; Brinkman, M.C.; Nishioka, M.G.; Cox, D.C. Environ. Sci. Technol., 2009, 43, 4294-4300.
[12]
Holoubek, I.; Klánová, J.; Kočan, A.; Čupr, P.; Dudarev, A.; Boruvkova, J.; Chromá, K. First Regional Monitoring Report Central and Eastern European and Central Asian Region.RECETOX MU Brno. RECETOX-TOCOEN REPORTS No. 339 2008.
[13]
Yang, Y.; Li, D.; Mu, D. Atmos. Environ., 2008, 42, 677-687.
[14]
Li, J.; Zhang, G.; Guo, L.; Xu, W.; Li, X.; Lee, C.S.L.; Ding, A.; Wang, T. Atmos. Environ., 2007, 41, 3889-3903.
[15]
Murayama, H.; Takase, Y.; Mitobe, H.; Mukai, H.; Ohzeki, T.; Shimizu, K.; Kitayama, Y. Chemosphere, 2003, 52, 683-694.
[16]
Ouyang, H-L. He, W.; Qin, N.; Kong, X.-Z.; Liu, W.-X.; He, Q.-S.; Wang, Q.-M.; Jiang, Y.-J.; Yang, C.; Yang, B. Sci. World J., 2012.
[17]
Lin, T.; Li, J.; Xu, Y.; Liu, X.; Luo, C.; Cheng, H.; Chen, Y.; Zhang, G. Sci. Total Environ., 2012, 435, 244-252.
[18]
Offenberg, J.H.; Naumova, Y.Y.; Turpin, B.J.; Eisenreich, S.J.; Morandi, M.T.; Stock, T.; Colome, S.D.; Winer, A.M.; Spektor, D.M.; Zhang, J.; Weisel, C.P. Environ. Sci. Technol., 2004, 38, 2760-2768.
[19]
Yuan, G-L.; Wu, M-Z.; Sun, Y.; Li, J.; Han, P.; Wang, G-H. Environ. Pollut., 2015, 206, 282-288.
[20]
Kwok, E.S.C.; Atkinson, R.; Arey, J. Int. J. Chem. Kinet., 1997, 29, 299-309.
[21]
Xie, H-B.; Li, C.; He, N.; Wang, C.; Zhang, S.; Chen, J. Environ. Sci. Technol., 2014, 48, 1700-1706.
[22]
Keyte, I.J.; Harrison, R.M.; Lammel, G. Chem. Soc. Rev., 2013, 42, 9333-9391.
[23]
Zhao, X.; Wang, L. J. Phys. Chem. A, 2017, 121, 3247-3253.
[24]
Xu, F.; Shi, X.; Zhang, Q.; Wang, W. Chemosphere, 2016, 162, 345-354.
[25]
Robinson, P.J.; Holbrook, K.A. Unimolecular Reactions, 1972.
[26]
Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Inc., Wallingford, CT; , 2009, 200, .
[27]
Zhao, N.; Qingzhu, Z.Z.; Wang, W.X. Sci. Total Environ., 2016, 563, 1008-1015.
[28]
Gonzalez, C.; Schlegel, H.B. J. Chem. Phys., 1989, 90, 2154-2161.
[29]
Glowacki, D.R.; Liang, C-H.; Morley, C.; Pilling, M.J.; Robertson, S.H. J. Phys. Chem. A, 2012, 116, 9545-9560.
[30]
Buchert, H.; Class, T.; Ballschmiter, K. Fresenius Z. Anal. Chem., 1989, 333, 211-217.
[31]
Kautzman, K.E.; Surratt, J.D.; Chan, M.N.; Chan, A.W.H.; Hersey, S.P.; Chhabra, P.S.; Dalleska, N.F.; Wennberg, P.O.; Flagan, R.C.; Seinfeld, J.H. J. Phys. Chem. A, 2010, 114, 913-934.
[32]
Macleod, M.; Scheringer, M.; Podey, H.; Jones, K.C.; Hungerbuehler, K. Environ. Sci. Technol., 2007, 41, 3249-3253.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy