Effects of Temperature and Alloy Composition on Nanomechanical Properties of ZrCu Metallic Glass under Tension

Author(s): Cheng-Da Wu , Te-Hua Fang* , Kuan-Chi Chao .

Journal Name: Current Nanoscience

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The nanomechanical properties of Zr50Cu50 metallic glass under tension are studied. The effects of temperature and alloy composition are investigated in terms of atomic trajectories, slip vectors, stress-strain curve, and radial distribution function.

Methods: The molecular dynamics simulations based on the many-body tight-binding potential are applied to analyze the nanomechanical properties of metallic glass under tension.

Results: The mechanical properties of the metallic glass are sensitive to temperature and alloy composition. Under tensile deformation, the stress increases with increasing temperature and Zr content in the alloys. At higher temperatures, the alloy atoms have high slip vectors, and plasticity becomes more homogeneous due to a better flow ability of atoms.

Conclusion: The alloys with higher Zr content have larger mechanical strengths. The alloys with higher Cu content have more stable structures.

Keywords: ZrCu, metallic glass, mechanical properties, tension test, molecular dynamics, temperature.

[1]
Sambandam, S.N.; Bhansali, S.; Bhethanabotla, V.R. Synthesis and characterization of amorphous metallic alloy thin films for MEMS applications. Proc. Mater. Res. Soc. Symp. , 2004, 806, MM8.
[2]
Saotome, Y.; Noguchi, Y.; Zhang, T.; Inoue, A. Characteristic behavior of Pt-based metallic glass under rapid heating and its application to microforming. Mater. Sci. Eng. A, 2004, 375-377, 389-393.
[3]
Ning, S.R.; Gao, J.; Wang, Y.G. Review on applications of low loss amorphous metals in motors. Adv. Mat. Res., 2010, 129-131, 1366-1371.
[4]
Schroers, J. Processing of bulk metallic glass. Adv. Mater., 2010, 22, 1566-1597.
[5]
Singer, J.P.; Gopinadhan, M.; Shao, Z.; Taylor, A.D.; Schroers, J.; Osuji, C.O. Nanoimprinting sub-100 nm features in a photovoltaic nanocomposite using durable bulk metallic glass molds. ACS Appl. Mater. Interfaces, 2015, 7, 3456-3461.
[6]
Wu, C.D.; Fang, T.H.; Lin, M.H.; Su, J.K. Mechanics and pattern transfer of imprinted NiAl amorphous films investigated using atomistic simulation. Curr. Nanosci., 2017, 13(2), 215-220.
[7]
Telford, M. The case for bulk metallic glass. Mater. Today, 2004, 7, 36-43.
[8]
Salimon, A.I.; Ashby, M.F.; Brechet, Y.; Greer, A.L. Bulk metallic glasses: What are they good for? Mater. Sci. Eng. A, 2004, 375, 385-388.
[9]
Peker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22. 5. Appl. Phys. Lett., 1993, 63, 2342-2344.
[10]
Liu, Y.; Hata, S.; Wada, K.; Shimokohbe, A. Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass. Jpn. J. Appl. Phys., 2001, 40, 5382-5388.
[11]
Zhang, Y.; Mendelev, M.I.; Wang, C.Z.; Ott, R.; Zhang, F.; Besser, M.F.; Ho, K.M.; Kramer, M.J. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study. Phys. Rev. B , 2014, 90174101
[12]
Johnson, W.L. Bulk amorphous metal - an emerging engineering material. J. Miner. Met. Mater. Soc., 2002, 54, 40-43.
[13]
Chen, Y.Q.; Cao, A.J.; Ma, E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater., 2009, 57, 3253-3267.
[14]
Cao, A.J.; Cheng, Y.Q.; Ma, E. Structural processes that initiate shear localization in metallic glass. Acta Mater., 2009, 57, 5146-5155.
[15]
Xu, J.; Ma, E. Damage-tolerant Zr–Cu–Al-based bulk metallic glasses with record-breaking fracture toughness. J. Mater. Res., 2014, 29(14), 1489-1499.
[16]
Cheng, Y.Q.; Sheng, H.W.; Ma, E. Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. , 2008, 78014207
[17]
Li, Q.K.; Li, M. Molecular dynamics simulation of intrinsic and extrinsic mechanical properties of metallic glasses. Intermetallics, 2006, 14, 1005-1010.
[18]
Wu, C.D. Atomistic simulation of nanoformed metallic glass. Appl. Surf. Sci., 2015, 343, 153-159.
[19]
Murali, P.; Guo, T.F.; Zhang, Y.W.; Narasimhan, R.; Li, Y.; Gao, H.J. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys. Rev. Lett., 2011, 107215501
[20]
Haile, J.M. Molecular Dynamics Simulation: Elementary Methods; New York: Wiley, 1992.
[21]
Li, F.; Liu, X.J.; Lu, Z.P. Atomic structural evolution during glass formation of a Cu–Zr binary metallic glass. Comput. Mater. Sci., 2014, 85, 147-153.
[22]
Dalgic, S.S.; Celtek, M. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy. EPJ Web Conf., 2011.15, 03008..
[23]
Delogu, F. Molecular dynamics study of size effects in the compression of metallic glass nanowires. Phys. Rev. B , 2009, 79184109
[24]
Tian, L.; Cheng, Y.Q.; Shan, Z.W.; Li, J.; Wang, C.C.; Han, X.D.; Sun, J.; Ma, E. Approaching the ideal elastic limit of metallic glasses. Nat. Commun., 2012, 3, 609.
[25]
Greer, J.R.; De Hosson, J.T.M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci., 2011, 56, 654-724.
[26]
Volkert, C.A.; Donohue, A.; Spaepen, F. Effect of sample size on deformation in amorphous metals. J. Appl. Phys., 2008, 103083539
[27]
Ghidelli, M.; Gravier, S.; Blandin, J.J.; Djemia, P.; Mompiou, F.; Abadias, G.; Raskin, J.P.; Pardoen, T. Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater., 2015, 90, 232-241.
[28]
Ghidelli, M.; Gravier, S.; Blandin, J.J.; Raskin, J.P.; Lani, F.; Pardoen, T. Size-dependent failure mechanisms in ZrNi thin metallic glass films. Scr. Mater., 2014, 89, 9-12.
[29]
Chen, C.Q.; Pei, Y.T.; De Hosson, J.T.M. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater., 2010, 58, 189-200.
[30]
Fang, T.H.; Wu, C.D.; Chang, W.J.; Chi, S.S. Effect of thermal annealing on nanoimprinted Cu-Ni alloys using molecular dynamics simulation. Appl. Surf. Sci., 2009, 255, 6043-6047.
[31]
Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. Rep., 2013, 74, 71-132.
[32]
Cheng, Y.Q.; Ma, E. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci., 2011, 56, 379-473.
[33]
Imran, M.; Hussain, F.; Rashid, M.; Cai, Y.; Ahmad, S.A. Mechanical behavior of Cu–Zr bulk metallic glasses (BMGs): A molecular dynamics approach. Chin. Phys. B, 2013, 22(9)096101
[34]
Park, K.W.; Jang, J.; Wakeda, M.; Shibutani, Y.; Lee, J.C. Atomic packing density and its influence on the properties of Cu–Zr amorphous alloys. Scr. Mater., 2007, 57, 805-808.
[35]
Lee, J.C.; Park, K.W.; Kim, K.H.; Fleury, E.; Lee, B.J.; Wakeda, M.; Shibutani, Y. Origin of the plasticity in bulk amorphous alloys. J. Mater. Res., 2007, 22, 3087-3097.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [481 - 485]
Pages: 5
DOI: 10.2174/1573413714666181105150337
Price: $58

Article Metrics

PDF: 32
HTML: 2