Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Oral Drug Delivery Systems for Ulcerative Colitis Therapy: A Comparative Study with Microparticles and Nanoparticles

Author(s): Panpan Ma, Xiaoying Si, Qiubing Chen, Lijun Ma, Meili Hou, Zhigang Xu, Yuejun Kang, Jianglin Wang* and Bo Xiao*

Volume 19, Issue 4, 2019

Page: [304 - 311] Pages: 8

DOI: 10.2174/1568009618666181016152042

Price: $65

Abstract

Background: Oral administrations of microparticles (MPs) and nanoparticles (NPs) have been widely employed as therapeutic approaches for the treatment of ulcerative colitis (UC). However, no previous study has comparatively investigated the therapeutic efficacies of MPs and NPs.

Methods: In this study, curcumin (CUR)-loaded MPs (CUR-MPs) and CUR-loaded NPs (CUR-NPs) were prepared using a single water-in-oil emulsion solvent evaporation technique. Their therapeutic outcomes against UC were further comparatively studied.

Results: The resultant spherical MPs and NPs exhibited slightly negative zeta-potential with average particle diameters of approximately 1.7 µm and 270 nm, respectively. It was found that NPs exhibited a much higher CUR release rate than MPs within the same period of investigation. In vivo experiments demonstrated that oral administration of CUR-MPs and CUR-NPs reduced the symptoms of inflammation in a UC mouse model induced by dextran sulfate sodium. Importantly, CUR-NPs showed much better therapeutic outcomes in alleviating UC compared with CUR-MPs.

Conclusion: NPs can improve the anti-inflammatory activity of CUR by enhancing the drug release and cellular uptake efficiency, in comparison with MPs. Thus, they could be exploited as a promising oral drug delivery system for effective UC treatment.

Keywords: Oral administration, drug delivery system, ulcerative colitis, microparticle, nanoparticle, inflammation.

Graphical Abstract
[1]
Xiao, B.; Xu, Z.G.; Viennois, E.; Zhang, Y.; Zhang, Z.; Zhang, M.; Han, M.; Kang, Y.; Merlin, D. Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis. Mol. Ther., 2017, 25(7), 1628-1640.
[2]
Nguyen, H.T.; Dalmasso, G.; Torkvist, L.; Halfvarson, J.; Yan, Y.; Laroui, H.; Shmerling, D.; Tallone, T.; D’Amato, M.; Sitaraman, S.V.; Merlin, D. CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice. J. Clin. Invest., 2011, 121(5), 1733-1747.
[3]
Xiao, B.; Laroui, H.; Ayyadurai, S.; Viennois, E.; Charania, M.A.; Zhang, Y.; Merlin, D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy. Biomaterials, 2013, 34(30), 7471-7482.
[4]
Pichai, M.V.; Ferguson, L.R. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases. World J. Gastroenterol., 2012, 18(23), 2895-2901.
[5]
Laroui, H.; Theiss, A.L.; Yan, Y.; Dalmasso, G.; Nguyen, H.T.; Sitaraman, S.V.; Merlin, D. Functional TNFalpha gene silencing mediated by polyethyleneimine/TNFalpha siRNA nanocomplexes in inflamed colon. Biomaterials, 2011, 32(4), 1218-1228.
[6]
Gómez-Estaca1, J.; Balaguer, M.P.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocoll., 2017, 70, 313-320.
[7]
Xiao, B.; Zhang, Z.; Viennois, E.; Kang, Y.; Zhang, M.; Han, M.K.; Chen, J.; Merlin, D. Combination therapy for ulcerative colitis: Orally targeted nanoparticles prevent mucosal damage and relieve inflammation. Theranostics, 2016, 6(12), 2250.
[8]
He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules, 2015, 20(5), 9183-9213.
[9]
Beloqui, A.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Preat, V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int. J. Pharm., 2014, 473(1), 203-212.
[10]
Lahiff, C.; Moss, A.C. Curcumin for clinical and endoscopic remission in ulcerative colitis. Inflamm. Bowel Dis., 2011, 17(7), E66.
[11]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[12]
Dulbecco, P.; Savarino, V. Therapeutic potential of curcumin in digestive diseases. World J. Gastroenterol., 2013, 19(48), 9256-9270.
[13]
Irving, G.R.; Karmokar, A.; Berry, D.P.; Brown, K.; Steward, W.P. Curcumin: the potential for efficacy in gastrointestinal diseases. Best Pract. Res. Clin. Gastroenterol., 2011, 25(4), 519-534.
[14]
Hani, U.; Shivakumar, H.G.; Osmani, R.A.; Srivastava, A.; Kumar Varma, N.S. Development of a curcumin bioadhesive monolithic tablet for treatment of vaginal candidiasis. Iran. J. Pharm. Res., 2016, 15(1), 23-34.
[15]
Hazzah, H.A.; Farid, R.M.; Nasra, M.M.; El-Massik, M.A.; Abdallah, O.Y. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: Development and characterization. Int. J. Pharm., 2015, 492(1), 248-257.
[16]
Ni, J.; Tian, F.; Dahmani, F.Z.; Yang, H.; Yue, D.; He, S.; Zhou, J.; Yao, J. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs. Drug Deliv., 2016, 23(9), 3424-3435.
[17]
Xiao, B.; Laroui, H.; Viennois, E.; Ayyadurai, S.; Charania, M.A.; Zhang, Y.; Zhang, Z.; Baker, M.T.; Zhang, B.; Gewirtz, A.T.; Merlin, D. Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice. Gastroenterology, 2014, 146(5), 1289-1300.
[18]
Xiao, B.; Merlin, D. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin. Drug Deliv., 2012, 9(11), 1393-1407.
[19]
Lautenschlager, C.; Schmidt, C.; Lehr, C.M.; Fischer, D.; Stallmach, A. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur. J. Pharm. Biopharm., 2013, 85(3), 578-586.
[20]
Lamprecht, A.; Schafer, U.; Lehr, C.M. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res., 2001, 18(6), 788-793.
[21]
Doshi, N.; Mitragotri, S. Designer biomaterials for nanomedicine. Adv. Funct. Mater., 2009, 19(24), 3843-3854.
[22]
Youshia, J.; Lamprecht, A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin. Drug Deliv., 2016, 13(2), 281-294.
[23]
Mir, M.; Ahmed, N.; Rehman, A. Recent applications of PLGA based nanostructures in drug delivery. Colloid. Surface B., 2017, 159, 217-231.
[24]
Beloqui, A.; Memvanga, P.B.; Coco, R.; Reimondez-Troitiño, S.; Alhouayek, M.; Muccioli, G.G.; Alonso, M.J.; Csaba, N.; de la Fuente, M.; Préat, V. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloid Surface B., 2016, 143, 327-335.
[25]
Moulari, B.; Beduneau, A.; Pellequer, Y.; Lamprecht, A. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J. Control. Release, 2014, 188, 9-17.
[26]
Huang, Z.; Gan, J.; Jia, L.; Guo, G.; Wang, C.; Zang, Y.; Ding, Z.; Chen, J.; Zhang, J.; Dong, L. An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease. Biomaterials, 2015, 48, 26-36.
[27]
Cohen-Sela, E.; Chorny, M.; Koroukhov, N.; Danenberg, H.D.; Golomb, G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Release, 2009, 133(2), 90-95.
[28]
Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods critical comparison. Adv. Colloid Interface Sci., 2011, 163(2), 90-122.
[29]
Chen, Y.F.; Rosenzweig, Z. Luminescent CdSe quantum dot doped stabilized micelles. Nano Lett., 2002, 2(11), 1299-1302.
[30]
Mu, L.; Feng, S.S. PLGA/TPGS nanoparticles for controlled release of paclitaxel: Effects of the emulsifier and drug loading ratio. Pharm. Res., 2003, 20(11), 1864-1872.
[31]
Hassan, C.M.; Peppas, N.A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci., 2000, 153, 37-65.
[32]
Ramasamy, T.; Kim, J.H.; Choi, J.Y.; Tran, T.H.; Choi, H.G.; Yong, C.S.; Kim, J.O. pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J. Mater. Chem. B , 2014, 2(37), 6324-6333.
[33]
Wu, H.; Wang, S.; Fang, H.; Zan, X.; Zhang, J.; Wan, Y. Chitosan-polycaprolactone copolymer microspheres for transforming growth factor-beta1 delivery. Colloids Surf. B Biointerfaces, 2011, 82(2), 602-608.
[34]
Aigner, A. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J. Biomed. Biotechnol., 2006, 71659.
[35]
Perse, M.; Cerar, A. Dextran sodium sulphate colitis mouse model: Traps and tricks. J. Biomed. Biotechnol., 2012, 2012, 718617.
[36]
Grisham, M.B. Do different animal models of IBD serve different purposes? Inflamm. Bowel Dis., 2008, 14(S2), S132-S133.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy