Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

In Silico Design of Fusion Toxin DT389GCSF and a Comparative Study

Author(s): Maryam G. Siahmazgi, Mohammad A.N. Khalili*, Fathollah Ahmadpour, Sirus Khodadadi and Mehdi Zeinoddini

Volume 16, Issue 3, 2020

Page: [238 - 244] Pages: 7

DOI: 10.2174/1573409914666181012151242

Price: $65

Abstract

Background: Chemotherapy and radiotherapy have negative effects on normal tissues and they are very expensive and lengthy treatments. These disadvantages have recently attracted researchers to the new methods that specifically affect cancerous tissues and have lower damage to normal tissues. One of these methods is the use of intelligent recombinant fusion toxin. The fusion toxin DTGCSF, which consists of linked Diphtheria Toxin (DT) and Granulocyte Colony Stimulate Factor (GCSF), was first studied by Chadwick et al. in 1993 where HATPL linker provided the linking sequence between GCSF and the 486 amino acid sequences of DT.

Methods: In this study, the fusion toxin DT389GCSF is evaluated for functional structure in silico. With the idea of the commercial fusion toxin of Ontak, the DT in this fusion protein is designed incomplete for 389 amino acids and is linked to the beginning of the GCSF cytokine via the SG4SM linker (DT389GCSF). The affinity of the DT389GCSF as a ligand with GCSF-R as receptor was compared with DT486GCSF as a ligand with GCSF-R as receptor. Both DT486GCSF and its receptor GCSF-R have been modeled by Easy Modeler2 software. Our fusion protein (DT389GCSF) and GCSF-R are modeled through Modeller software; all of the structures were confirmed by server MDWEB and VMD software. Then, the interaction studies between two proteins are done using protein-protein docking (HADDOCK 2.2 web server) for both the fusion protein in this study and DT486GCSF.

Results: The HADDOCK results demonstrate that the interaction of DT389GCSF with GCSF-R is very different and has a more powerful interaction than DT486GCSF with GCSF-R.

Conclusion: HADDOCK web server is operative tools for evaluation of protein–protein interactions, therefore, in silico study of DT389GCSF will help with studying the function and the structure of these molecules. Moreover, DT389GCSF may have important new therapeutic applications.

Keywords: Fusion protein, GCSF, GCSF receptor, protein modeling, HADDOCK, protein-protein docking.

Graphical Abstract
[1]
Bennett, J.M.; Andersen, J.W.; Cassileth, P.A. Long term survival in acute myeloid leukemia: the Eastern Cooperative Oncology Group (ECOG) experience. Leuk. Res., 1991, 15(4), 223-227.
[http://dx.doi.org/10.1016/0145-2126(91)90124-C] [PMID: 2030603]
[2]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer statistics, 2009. CA Cancer J. Clin., 2009, 59(4), 225-249.
[http://dx.doi.org/10.3322/caac.20006] [PMID: 19474385]
[3]
Allahyari, H.; Heidari, S.; Ghamgosha, M.; Saffarian, P.; Amani, J. Immunotoxin: A new tool for cancer therapy. Tumour Biol., 2017, 39(2)1010428317692226
[http://dx.doi.org/10.1177/1010428317692226] [PMID: 28218037]
[4]
Kreitman, R.J. Immunotoxins for targeted cancer therapy. AAPS J., 2006, 8(3), E532-E551.
[http://dx.doi.org/10.1208/aapsj080363] [PMID: 17025272]
[5]
Kawakami, K.; Aggarwal, B.B.; Puri, R.K. Cytotoxins and immunotoxins for cancer therapy: clinical applications; CRC Press, 2004.
[http://dx.doi.org/10.4324/9780203303160]
[6]
Mitamura, T.; Higashiyama, S.; Taniguchi, N.; Klagsbrun, M.; Mekada, E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J. Biol. Chem., 1995, 270(3), 1015-1019.
[http://dx.doi.org/10.1074/jbc.270.3.1015] [PMID: 7836353]
[7]
Weidle, U.H.; Tiefenthaler, G.; Schiller, C.; Weiss, E.H.; Georges, G.; Brinkmann, U. Prospects of bacterial and plant protein-based immunotoxins for treatment of cancer. Cancer Genomics Proteomics, 2014, 11(1), 25-38.
[PMID: 24633317]
[8]
Urieto, J.O.; Liu, T.; Black, J.H.; Cohen, K.A.; Hall, P.D.; Willingham, M.C.; Pennell, L.K.; Hogge, D.E.; Kreitman, R.J.; Frankel, A.E. Expression and purification of the recombinant diphtheria fusion toxin DT388IL3 for phase I clinical trials. Protein Expr. Purif., 2004, 33(1), 123-133.
[http://dx.doi.org/10.1016/j.pep.2003.09.003] [PMID: 14680969]
[9]
Choe, S.; Bennett, M.J.; Fujii, G.; Curmi, P.M.; Kantardjieff, K.A.; Collier, R.J.; Eisenberg, D. The crystal structure of diphtheria toxin. Nature, 1992, 357(6375), 216-222.
[http://dx.doi.org/10.1038/357216a0] [PMID: 1589020]
[10]
Ladokhin, A.S. pH-triggered conformational switching along the membrane insertion pathway of the diphtheria toxin T-domain. Toxins (Basel), 2013, 5(8), 1362-1380.
[http://dx.doi.org/10.3390/toxins5081362] [PMID: 23925141]
[11]
Park, L.S.; Waldron, P.E.; Friend, D.; Sassenfeld, H.M.; Price, V.; Anderson, D.; Cosman, D.; Andrews, R.G.; Bernstein, I.D.; Urdal, D.L. Interleukin-3, GM-CSF, and G-CSF receptor expression on cell lines and primary leukemia cells: receptor heterogeneity and relationship to growth factor responsiveness. Blood, 1989, 74(1), 56-65.
[http://dx.doi.org/10.1182/blood.V74.1.56.56] [PMID: 2473802]
[12]
Anderlini, P.; Przepiorka, D.; Champlin, R.; Körbling, M. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood, 1996, 88(8), 2819-2825.
[http://dx.doi.org/10.1182/blood.V88.8.2819.bloodjournal8882819] [PMID: 8874177]
[13]
Cetean, S.; Căinap, C.; Constantin, A-M.; Căinap, S.; Gherman, A.; Oprean, L.; Hangan, A.; Oprean, R. The importance of the granulocyte-colony stimulating factor in oncology. Clujul Med., 2015, 88(4), 468-472.
[PMID: 26732055]
[14]
Kuga, T.; Komatsu, Y.; Yamasaki, M.; Sekine, S.; Miyaji, H.; Nishi, T.; Sato, M.; Yokoo, Y.; Asano, M.; Okabe, M. Mutagenesis of human granulocyte colony stimulating factor. Biochem. Biophys. Res. Commun., 1989, 159(1), 103-111.
[http://dx.doi.org/10.1016/0006-291X(89)92410-8] [PMID: 2466458]
[15]
Aritomi, M.; Kunishima, N.; Okamoto, T.; Kuroki, R.; Ota, Y.; Morikawa, K. Atomic structure of the GCSF-receptor complex showing a new cytokine-receptor recognition scheme. Nature, 1999, 401(6754), 713-717.
[http://dx.doi.org/10.1038/44394] [PMID: 10537111]
[16]
Hiraoka, O.; Anaguchi, H.; Yamasaki, K.; Fukunaga, R.; Nagata, S.; Ota, Y. Ligand binding domain of granulocyte colony-stimulating factor receptor. J. Biol. Chem., 1994, 269(35), 22412-22419.
[PMID: 7520915]
[17]
Layton, J.E.; Hall, N.E.; Connell, F.; Venhorst, J.; Treutlein, H.R. Identification of ligand-binding site III on the immunoglobulin-like domain of the granulocyte colony-stimulating factor receptor. J. Biol. Chem., 2001, 276(39), 36779-36787.
[http://dx.doi.org/10.1074/jbc.M104787200] [PMID: 11468284]
[18]
Young, D.C.; Zhan, H.; Cheng, Q.L.; Hou, J.; Matthews, D.J. Characterization of the receptor binding determinants of granulocyte colony stimulating factor. Protein Sci., 1997, 6(6), 1228-1236.
[http://dx.doi.org/10.1002/pro.5560060611] [PMID: 9194183]
[19]
Layton, J.E.; Shimamoto, G.; Osslund, T.; Hammacher, A.; Smith, D.K.; Treutlein, H.R.; Boone, T. Interaction of granulocyte colony-stimulating factor (G-CSF) with its receptor. Evidence that Glu19 of G-CSF interacts with Arg288 of the receptor. J. Biol. Chem., 1999, 274(25), 17445-17451.
[http://dx.doi.org/10.1074/jbc.274.25.17445] [PMID: 10364174]
[20]
Chadwick, D.E.; Williams, D.P.; Niho, Y.; Murphy, J.R.; Minden, M.D. Cytotoxicity of a recombinant diphtheria toxin-granulocyte colony-stimulating factor fusion protein on human leukemic blast cells. Leuk. Lymphoma, 1993, 11(3-4), 249-262.
[http://dx.doi.org/10.3109/10428199309087002] [PMID: 7505148]
[21]
(a) Foss, F.M. DAB(389)IL-2 (denileukin diftitox, ONTAK): a new fusion protein technology. Clin. Lymphoma, 2000, 1(Suppl. 1), S27-S31.
[http://dx.doi.org/10.3816/CLM.2000.s.005] [PMID: 11707860]
(b) Duvic, M.; Cather, J. Immunotoxin DAB389-interleukin 2 (Ontak) in the management of cutaneous T-cell lymphoma. Curr Pract Med, 1999, 2, 7-9.
[22]
Tamada, T.; Honjo, E.; Maeda, Y.; Okamoto, T.; Ishibashi, M.; Tokunaga, M.; Kuroki, R. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex. Proc. Natl. Acad. Sci. USA, 2006, 103(9), 3135-3140.
[http://dx.doi.org/10.1073/pnas.0511264103] [PMID: 16492764]
[23]
Talebi, S.; Saeedinia, A.; Zeinoddini, M.; Ahmadpour, F.; Sadeghizadeh, M. In Silico Study of Mutations on Binding between Interferon Alpha 2b and IFNAR1 Receptor. Curr. Proteomics, 2018, 15(1), 71-76.
[http://dx.doi.org/10.2174/1570164614666170928154742]
[24]
Zurawski, S.M.; Zurawski, G. Receptor antagonist and selective agonist derivatives of mouse interleukin-2. EMBO J., 1992, 11(11), 3905-3910.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05483.x] [PMID: 1396584]
[25]
Collins, L.; Tsien, W.H.; Seals, C.; Hakimi, J.; Weber, D.; Bailon, P.; Hoskings, J.; Greene, W.C.; Toome, V.; Ju, G. Identification of specific residues of human interleukin 2 that affect binding to the 70-kDa subunit (p70) of the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA, 1988, 85(20), 7709-7713.
[http://dx.doi.org/10.1073/pnas.85.20.7709] [PMID: 3051003]
[26]
Sauvé, K.; Nachman, M.; Spence, C.; Bailon, P.; Campbell, E.; Tsien, W.H.; Kondas, J.A.; Hakimi, J.; Ju, G. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA, 1991, 88(11), 4636-4640.
[http://dx.doi.org/10.1073/pnas.88.11.4636] [PMID: 2052547]
[27]
vanderSpek, J.C.; Sutherland, J.A.; Ratnarathorn, M.; Howland, K.; Ciardelli, T.L.; Murphy, J.R. DAB389 interleukin-2 receptor binding domain mutations. Cytotoxic probes for studies of ligand-receptor interactions. J. Biol. Chem., 1996, 271(21), 12145-12149.
[http://dx.doi.org/10.1074/jbc.271.21.12145] [PMID: 8647806]
[28]
Williams, D.P.; Parker, K.; Bacha, P.; Bishai, W.; Borowski, M.; Genbauffe, F.; Strom, T.B.; Murphy, J.R. Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng., 1987, 1(6), 493-498.
[http://dx.doi.org/10.1093/protein/1.6.493] [PMID: 3334101]
[29]
Dominguez, C.; Boelens, R.; Bonvin, A.M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc., 2003, 125(7), 1731-1737.
[http://dx.doi.org/10.1021/ja026939x] [PMID: 12580598]
[30]
Kiyokawa, T.; Williams, D.P.; Snider, C.E.; Strom, T.B.; Murphy, J.R. Protein engineering of diphtheria-toxin-related interleukin-2 fusion toxins to increase cytotoxic potency for high-affinity IL-2-receptor-bearing target cells. Protein Eng., 1991, 4(4), 463-468.
[http://dx.doi.org/10.1093/protein/4.4.463] [PMID: 1881872]
[31]
Shaw, J.P.; Akiyoshi, D.E.; Arrigo, D.A.; Rhoad, A.E.; Sullivan, B.; Thomas, J.; Genbauffe, F.S.; Bacha, P.; Nichols, J.C. Cytotoxic properties of DAB486EGF and DAB389EGF, epidermal growth factor (EGF) receptor-targeted fusion toxins. J. Biol. Chem., 1991, 266(31), 21118-21124.
[PMID: 1939154]
[32]
Theodoulou, M.; Baselga, J.; Scher, H.; Dantis, L.; Trainor, K.; Mendelsohn, J.; Howes, L.; Elledge, R.; Ravdin, P.; Bacha, P. In Phase I dose-escalation study of the safety, tolerability, pharmacokinetics and biologic effects of DAB389EGF in patients with solid malignancies that express EGF receptors (EGFR Proc ASCO, 1995, p. 480

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy