Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanotechnology in Enzyme Immobilization: An Overview on Enzyme Immobilization with Nanoparticle Matrix

Author(s): Kushagri Singh, Abha Mishra*, Deepankar Sharma and Kavita Singh

Volume 15, Issue 3, 2019

Page: [234 - 241] Pages: 8

DOI: 10.2174/1573413714666181008144144

Price: $65

Abstract

Engineering of biocatalysts with the help of immobilization techniques is a worthy approach for the advancement of enzyme function and stability and is finer to the other chemical as well as biological methods. These biocatalysts encapsulation methods actually use very gentle method conditions that hardly affect biocatalysts internal specific biocatalytic activity and this leads to its internment without losing its freedom but restrict the movements related to unfolding. Additionally, enzyme encapsulation somehow imitates their mode of normal incidence within the cells and it also provides secured surroundings for enzymes to the operating parameter changes. According to these advantages, enzyme encapsulation finds enhanced applications in a wide variety of fields such as medicine and sustained or continuous release delivery systems, biosensing, clinic diagnostic, biocatalysts in the manufacture of high-value yield correlated to pharmaceuticals especially in cancer cure, fragrances as well as flavors. This review mainly focuses on the current status of enzyme immobilization using nanocarriers, nanoparticles or polymeric matrix materials, which aim to summarize the latest research on the natural polymer, chitosan based nanoparticles in various enzyme immobilizations.

Keywords: Immobilization, nanotechnology, biocatalyst, enzymes, chitosan nanoparticles, pharmaceuticals.

Graphical Abstract
[1]
Berg, J.M.; Stryer, L.; Tymoczko, J.L. Bioquímica. Reverté, 6th ed; W.H. Freeman and Company: Barcelona, Spain, 2007.
[2]
Rahman, M.M. Reusable and mediator-free cholesterol biosensor based on cholesterol oxidase immobilized onto TGA-SAM modified smart bio-chips. PLoS One, 2014, 9(6), e100327.
[3]
Brena, B.; González-Pombo, P.; Batista-Viera, F. Immobilization of Enzymes: A Literature Survey.In: Guisan, J.; (eds.) Immobilization of Enzymes and Cells. Methods in Molecular Biology (Methods and Protocols); vol. 1051. Humana Press Totowa, NJ, 2013, Vol. 1051, pp. 15-30.
[4]
Stryer, L. Metabolism: Basic Concepts And Design. In: Biochemistry, 4th ed; W.H. Freeman and Company: New York, 1995; pp. 444-460.
[5]
Creighton, T.E. Proteins: Structure and Molecular Principles, 2nd ed; Freeman W.H. and Company: New York, 1984.
[6]
Katchalski-Katzir, E. Immobilized enzymes-learning from past successes and failures. Trends Biotechnol., 1993, 11(11), 471-478.
[7]
Mori, T.; Sato, T.; Tosa, T.; Chibata, I. Studies on immobilized enzymes. X. Preparation and properties of aminoacylase entrapped into acrylamide gel-lattice. Enzymologia, 1972, 43(4), 213.
[8]
Tischer, W.; Wedekind, F. Immobilized Enzymes: Methods and Applications. In: Biocatalysis - From Discovery to Application. Topics in Current Chemistry; Fessner, W.D., Ed.; vol. 200. Springer, Berlin, Heidelberg, 1999; Vol. 200, pp. 95-126.
[9]
Dwevedi, A. Implication of Enzyme Immobilization in Therapeutics as Well as Diagnostics of Various Diseases. In: Enzyme Immobilization; Springer, Cham, 2016; pp. 65-86.
[10]
Swaisgood, H.E. Immobilization of Enzymes and Some Applications in the Food Industry. In: Laskin, A.I.; (ed.). Enzymes and Immobilized Cells in Biotechnology; Benjamin Cummings, Menlo Park, C.A. Woodhead Publishing Limited., 1985.
[11]
Guibault, G.G.; Kauffmann, J.M.; Patriarche, J. Immobilized Enzyme Electrodes as Biosensors. In: Protein Immobilization. Fundamentals and Applications; Taylor, R.F., Ed.; Marcel Dekker, New York, NT, 1991; pp. 209-262.
[12]
Taylor, R.F.; Marenchic, I.G.; Spencer, R.H. Antibody and receptor based biosensors for detection and process control. Anal. Chim. Acta, 1991, 249(1), 67-70.
[13]
Chang, T.M. Therapeutic applications of immobilized proteins and cells. Bioprocess Technol., 1991, 14, 305-318.
[14]
Bickerstaff, G.F. Impact of genetic technology on enzyme technology. Genet. Eng. Biotechnol., 1995, 15(1), 13-30.
[15]
Sowjanya, N.T.; Dhivya, R.; Meenakshi, K.; Vedhanayakisri, K.A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Res. J. Eng. Technol, 2013, 4(4), 288-294.
[16]
Guisan, J.M. Immobilization of enzymes as the 21st century begins. In: Immobilization of enzymes and cells; Humana Press, 2006; pp. 1-13.
[17]
Clark, D.S. Can immobilization be exploited to modify enzyme activity? Trends Biotechnol., 1994, 12(11), 439-443.
[18]
Wong, L.S.; Thirlway, J.; Micklefield, J. Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase. J. Am. Chem. Soc., 2008, 130(37), 12456-12464.
[19]
Ghous, T.A. Analytical application of immobilised enzymes. J. Chem. Soc. Pak. Vol, 2001, 23(4), 228-234.
[20]
Chae, H.J.; In, M.J.; Kim, E.Y. Optimization of protease immobilization by covalent binding using glutaraldehyde. Appl. Biochem. Biotechnol., 1998, 73(2-3), 195-204.
[21]
Quirk, R.A.; Chan, W.C.; Davies, M.C.; Tendler, S.J.; Shakesheff, K.M. Poly (L-lysine)–GRGDS as a biomimetic surface modifier for poly (lactic acid). Biomaterials, 2001, 22(8), 865-872.
[22]
Bernfeld, P.; Wan, J. Antigens and enzymes made insoluble by entrapping them into lattices of synthetic. Polym. Sci, 1963, 142(3593), 678-679.
[23]
Riaz, A.; Qader, S.A.; Anwar, A.; Iqbal, S. Immobilization of A thermostable A-amylase on calcium alginate beads from Bacillus subtilis KIBGE-HAR. AJBAS, 2009, 3(3), 2883-2887.
[24]
Rosevear, A.; Kennedy, J.F.; Cabral, J. Immobilised Enzymes and Cells; Adam Hilger: Bristol, 1987.
[25]
Brady, D.; Jordaan, J. Advances in enzyme immobilisation. Biotechnol. Lett., 2009, 31(11), 1639.
[26]
Raja, D.S.; Liu, W.L.; Huang, H.Y.; Lin, C.H. Immobilization of protein on nanoporous metal-organic framework materials. Comments Inorg. Chem., 2015, 35(6), 331-349.
[27]
Porath, J. Immobilized metal ion affinity chromatography. Protein Expr. Purif., 1992, 3(4), 263-281.
[28]
Yücel, Y. Biodiesel production from pomace oil by using lipase immobilized onto olive pomace. Bioresour. Technol., 2011, 102(4), 3977-3980.
[29]
Sirisha, V.L.; Jain, A.; Jain, A. Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. Adv. Food Nutr. Res., 2016, 79, 179-211.
[30]
Feng, W.; Ji, P. Enzymes immobilized on carbon nanotubes. Biotechnol. Adv., 2011, 29(6), 889-895.
[31]
Gupta, M.N.; Kaloti, M.; Kapoor, M.; Solanki, K. Nanomaterials as matrices for enzyme immobilization. Artif. Cells Blood Substit. Immobil. Biotechnol., 2011, 39(2), 98-109.
[32]
Ansari, S.A.; Husain, Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv., 2012, 30(3), 512-523.
[33]
Liu, C.G.; Chen, X.G.; Park, H.J. Self-assembled nanoparticles based on linoleic-acid modified chitosan: Stability and adsorption of trypsin. Carbohydr. Polym., 2005, 62(3), 293-298.
[34]
Liu, C.G.; Desai, K.G.; Chen, X.G.; Park, H.J. Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan. J. Agric. Food Chem., 2005, 53(5), 1728-1733.
[35]
Min, K.; Yoo, Y.J. Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnol. Bioprocess Eng., 2014, 19(4), 553-567.
[36]
Vertegel, A.A.; Siegel, R.W.; Dordick, J.S. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 2004, 20(16), 6800-6807.
[37]
Lan, D.; Li, B.; Zhang, Z. Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens. Bioelectron., 2008, 24(4), 934-938.
[38]
Wu, C.L.; Chen, Y.P.; Yang, J.C.; Lo, H.F.; Lin, L.L. Characterization of lysine-tagged bacillus stearothermophilus leucine aminopeptidase II immobilized onto carboxylated gold nanoparticles. J. Mol. Catal., B Enzym., 2008, 54(3-4), 83-89.
[39]
Keighron, J.D.; Keating, C.D. Enzyme: Nanoparticle bioconjugates with two sequential enzymes: Stoichiometry and activity of malate dehydrogenase and citrate synthase on Au nanoparticles. Langmuir, 2010, 26(24), 18992-19000.
[40]
Cruz, J.C.; Würges, K.; Kramer, M.; Pfromm, P.H.; Rezac, M.E.; Czermak, P. Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media. Methods Mol. Biol., 2011, 743, 147-160.
[41]
Won, Y.H.; Jang, H.S.; Kim, S.M.; Stach, E.; Ganesana, M.; Andreescu, S.; Stanciu, L.A. Biomagnetic glasses: Preparation, characterization, and biosensor applications. Langmuir, 2009, 26(6), 4320-4326.
[42]
Ganesana, M.; Istarnboulie, G.; Marty, J.L.; Noguer, T.; Andreescu, S. Site-specific immobilization of A (His) 6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosens. Bioelectron., 2011, 30(1), 43-48.
[43]
Khoshnevisan, K.; Bordbar, A.K.; Zare, D.; Davoodi, D.; Noruzi, M.; Barkhi, M.; Tabatabaei, M. Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J., 2011, 171(2), 669-673.
[44]
Uygun, D.A.; Öztürk, N.; Akgöl, S.; Denizli, A. Novel magnetic nanoparticles for the hydrolysis of starch with Bacillus licheniformis A‐amylase. J. Appl. Polym. Sci., 2012, 123(5), 2574-2581.
[45]
Misson, M.; Zhang, H.; Jin, B. Nanobiocatalyst advancements and bioprocessing applications. J. R. Soc. Interface, 2015, 12(102), 20140891.
[46]
Lee, B.; Lopez‐Ferrer, D.; Kim, B.C.; Na, H.B.; Park, Y.I.; Weitz, K.K.; Warner, M.G.; Hyeon, T.; Lee, S.W.; Smith, R.D.; Kim, J. Rapid and efficient protein digestion using trypsin‐coated magnetic nanoparticles under pressure cycles. Proteomics, 2011, 11(2), 309-318.
[47]
Qiu, J.; Peng, H.; Liang, R. Ferrocene-modified Fe3O4@ SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochem. Commun., 2007, 9(11), 2734-2738.
[48]
Ahmad, R.; Sardar, M. Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: A comparative study. Indian J. Biochem. Biophys., 2014, 51(4), 314-320.
[49]
Ahmad, R.; Sardar, M. Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem., 2015, 4(2), 178.
[50]
Ahmad, R.; Khatoon, N.; Sardar, M. Biosynthesis, characterization and application of TiO2 nanoparticles in biocatalysis and protein folding. J. Proteins Proteom, 2013, 4(2), 115-121.
[51]
Ahmad, R.; Mishra, A.; Sardar, M. Peroxidase-TiO2 nanobioconjugates for the removal of phenols and dyes from aqueous solutions. Adv. Sci. Eng. Med., 2013, 5(10), 1020-1025.
[52]
Ahmad, R.; Mishra, A.; Sardar, M. Simultaneous immobilization and refolding of heat treated enzymes on TiO2 nanoparticles. Adv. Sci. Eng. Med., 2014, 6(12), 1264-1268.
[53]
Konwarh, R.; Karak, N.; Rai, S.K.; Mukherjee, A.K. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology, 2009, 20(22), 225107.
[54]
Malmiri, H.J.; Jahanian, M.A.; Berenjian, A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol., 2012, 8(4), 203-219.
[55]
Tan, Y.; Ma, S.; Liu, C.; Yu, W.; Han, F. Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles. Microbiol. Res., 2015, 178, 35-41.
[56]
Wang, Z.G.; Wan, L.S.; Liu, Z.M.; Huang, X.J.; Xu, Z.K. Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal., B Enzym., 2009, 56(4), 189-195.
[57]
Vazquez-Duhalt, R.; Tinoco, R.; D’Antonio, P.; Topoleski, L.T.; Payne, G.F. Enzyme conjugation to the polysaccharide chitosan: Smart biocatalysts and biocatalytic hydrogels. Bioconjug. Chem., 2001, 12(2), 301-306.
[58]
Ying, Q.Q.; Shi, L.E.; Zhang, X.Y.; Chen, W.; Yi, Y. Characterization of immobilized nuclease P1. Appl. Biochem. Biotechnol., 2007, 136(1), 119-126.
[59]
Yang, K.; Xu, N.S.; Su, W.W. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. J. Biotechnol., 2010, 148(2-3), 119-127.
[60]
Guo, Z.; Bai, S.; Sun, Y. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme Microb. Technol., 2003, 32(7), 776-782.
[61]
Krajewska, B. Application of chitin and chitosan based materials for enzyme immobilizations: A review. Enzyme Microb. Technol., 2004, 35(2-3), 126-139.
[62]
Tang, Z.X.; Qian, J.Q.; Shi, L.E. Characterizations of immobilized neutral proteinase on chitosan nano-particles. Process Biochem., 2006, 41(5), 1193-1197.
[63]
Biró, E.; Németh, Á.S.; Sisak, C.; Feczkó, T.; Gyenis, J. Preparation of chitosan particles suitable for enzyme immobilization. J. Biochem. Biophys. Methods, 2008, 70(6), 1240-1246.
[64]
Nakorn, P.N. Chitin nanowhisker and chitosan nanoparticles in protein immobilization for biosensor applications. J. Metals Mater. Miner, 2017, 18(2), 73-77.
[65]
Pieters, R.; Hunger, S.P.; Boos, J.; Rizzari, C.; Silverman, L.; Baruchel, A.; Goekbuget, N.; Schrappe, M.; Pui, C.H. L‐asparaginase treatment in acute lymphoblastic leukemia: A focus on Erwinia asparaginase. Cancer, 2011, 117(2), 238-249.
[66]
Kalkan, N.A.; Aksoy, S.; Aksoy, E.A.; Hasirci, N. Preparation of chitosan‐coated magnetite nanoparticles and application for immobilization of laccase. J. Appl. Polym. Sci., 2012, 123, 707-716.
[67]
Jia, H.; Zhu, G.; Wang, P. Catalytic behaviors of enzymes attached to nanoparticles: The effect of particle mobility. Biotechnol. Bioeng., 2003, 84(4), 406-414.
[68]
Li, G.Y.; Huang, K.L.; Jiang, Y.R.; Yang, D.L.; Ding, P. Preparation and characterization of Saccharomyces cerevisiae alcohol dehydrogenase immobilized on magnetic nanoparticles. Int. J. Biol. Macromol., 2008, 42(5), 405-412.
[69]
Fang, H.; Huang, J.; Ding, L.; Li, M.; Chen, Z. Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J. Wuhan Univ. Technol. Mat. Sci. Ed, 2009, 24(1), 42-47.
[70]
Kuo, C.H.; Liu, Y.C.; Chang, C.M.; Chen, J.H.; Chang, C.; Shieh, C.J. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr. Polym., 2012, 87(4), 2538-2545.
[71]
Mahmoud, K.A.; Male, K.B.; Hrapovic, S.; Luong, J.H. Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS Appl. Mater. Interfaces, 2009, 1(7), 1383-1386.
[72]
Talbert, J.N.; Goddard, J.M. Enzymes on material surfaces. Colloids Surf. B Biointerfaces, 2012, 93, 8-19.
[73]
Pieters, R.; Hunger, S.P.; Boos, J.; Rizzari, C.; Silverman, L.; Baruchel, A.; Goekbuget, N.; Schrappe, M.; Pui, C.H. L‐asparaginase treatment in acute lymphoblastic leukemia: A focus on Erwinia asparaginase. Cancer, 2011, 117(2), 238-249.
[74]
Feun, L.; You, M.; Wu, C.J.; Kuo, M.T.; Wangpaichitr, M.; Spector, S.; Savaraj, N. Arginine deprivation as a targeted therapy for cancer. Curr. Pharm. Des., 2008, 14(11), 1049-1057.
[75]
Danks, M.K.; Yoon, K.J.; Bush, R.A.; Remack, J.S.; Wierdl, M.; Tsurkan, L.; Kim, S.U.; Garcia, E.; Metz, M.Z.; Najbauer, J.; Potter, P.M. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res., 2007, 67(1), 22-25.
[76]
Bahreini, E.; Aghaiypour, K.; Abbasalipourkabir, R.; Mokarram, A.R.; Goodarzi, M.T.; Saidijam, M. Preparation and nanoencapsulation of L-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res. Lett., 2014, 9(1), 340.
[77]
Maiti, S. Nanometric Biopolymer Devices for Oral Delivery of Macromolecules with Clinical Significance. In: Grumezescu, A.; (ed.). Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Elsevier: Amsterdam, 2017; pp. 109-138.
[78]
Meng, X.; Xu, G.; Zhou, Q.L.; Wu, J.P.; Yang, L.R. Highly efficient solvent-free synthesis of 1, 3-diacylglycerols by lipase immobilised on nano-sized magnetite particles. Food Chem., 2014, 143, 319-324.
[79]
Chen, Y.Z.; Yang, C.T.; Ching, C.B.; Xu, R. Immobilization of lipases on hydrophobilized zirconia nanoparticles: Highly enantioselective and reusable biocatalysts. Langmuir, 2008, 24(16), 8877-8884.
[80]
Yang, H.H.; Zhang, S.Q.; Chen, X.L.; Zhuang, Z.X.; Xu, J.G.; Wang, X.R. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem., 2004, 76(5), 1316-1321.
[81]
Petkova, G.A.; Záruba, K.; Žvátora, P.; Král, V. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Res. Lett., 2012, 7(1), 287.
[82]
Jafary, F.; Panjehpour, M.; Varshosaz, J.; Yaghmaei, P. Stability improvement of immobilized alkaline phosphatase using chitosan nanoparticles. Braz. J. Chem. Eng., 2016, 33(2), 243-250.
[83]
Kouassi, G.K.; Irudayaraj, J.; McCarty, G. Examination of cholesterol oxidase attachment to magnetic nanoparticles. J. Nanobiotechnol, 2005, 3(1), 1.
[84]
Johnson, A.K.; Zawadzka, A.M.; Deobald, L.A.; Crawford, R.L.; Paszczynski, A.J. Novel method for immobilization of enzymes to magnetic nanoparticles. J. Nanopart. Res., 2008, 10(6), 1009-1025.
[85]
Namdeo, M.; Bajpai, S.K. Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J. Mol. Catal., B Enzym., 2009, 59(1-3), 134-139.
[86]
Pandey, P.; Singh, S.P.; Arya, S.K.; Gupta, V.; Datta, M.; Singh, S.; Malhotra, B.D. Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir, 2007, 23(6), 3333-3337.
[87]
Miletić, N.; Abetz, V.; Ebert, K.; Loos, K. Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromol. Rapid Commun., 2010, 31(1), 71-74.
[88]
Prakasham, R.S.; Devi, G.S.; Laxmi, K.R.; Rao, C.S. Novel synthesis of ferric impregnated silica nanoparticles and their evaluation as a matrix for enzyme immobilization. J. Phys. Chem. C, 2007, 111(10), 3842-3847.
[89]
Mishra, A.; Ahmad, R.; Singh, V.; Gupta, M.N.; Sardar, M. Preparation, characterization and biocatalytic activity of a nanoconjugate of alpha amylase and silver nanoparticles. J. Nanosci. Nanotechnol., 2013, 13(7), 5028-5033.
[90]
Thandavan, K.; Gandhi, S.; Sethuraman, S.; Rayappan, J.B.; Krishnan, U.M. Development of electrochemical biosensor with nano-interface for xanthine sensing-A novel approach for fish freshness estimation. Food Chem., 2013, 139(1-4), 963-969.
[91]
Soleimani, M.; Khani, A.; Najafzadeh, K. α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J. Mol. Catal., B Enzym., 2012, 74(1-2), 1-5.
[92]
Carrea, G.; Riva, S. Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Ed., 2000, 39(13), 2226-2254.
[93]
Aubin-Tam, M.E.; Hamad-Schifferli, K. Structure and function of nanoparticle-protein conjugates. Biomed. Mater., 2008, 3(3), 034001.
[94]
Di Marco, M.; Shamsuddin, S.; Razak, K.A.; Aziz, A.A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation. Int. J. Nanomedicine, 2010, 5, 37.
[95]
Andreescu, S.; Njagi, J.; Ispas, C. Nanostructured Materials for Enzyme Immobilization and Biosensors. In: Erokhin, V.; Ram, M.K.; Yavuz, O. (eds.). The New Frontiers of Organic and Composite Nanotechnology. Elsevier: Oxford OX2 8DP; UK, 2008; pp. 355-394.
[96]
Geoghegan, W.D.; Ackerman, G.A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin a, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application. J. Histochem. Cytochem., 1977, 25(11), 1187-1200.
[97]
Bryjak, J.; Trochimczuk, A.W. Immobilization of lipase and penicillin acylase on hydrophobic acrylic carriers. Enzyme Microb. Technol., 2006, 39(4), 573-578.
[98]
Hudson, S.; Cooney, J.; Magner, E. Proteins in mesoporous silicates. Angew. Chem. Int. Ed., 2008, 47(45), 8582-8594.
[99]
Bryjak, J.; Trochimczuk, A.W. Immobilization of lipase and penicillin acylase on hydrophobic acrylic carriers. Enzyme Microb. Technol., 2006, 39(4), 573-578.
[100]
Vianello, F.; Zennaro, L.; Di Paolo, M.L.; Rigo, A.; Malacarne, C.; Scarpa, M. Preparation, morphological characterization, and activity of thin films of horseradish peroxidase. Biotechnol. Bioeng., 2000, 68(5), 488-495.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy