Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Microstructure and Defect Study in Thin Film Heterostructure Materials

Author(s): Fan Wu*

Volume 10, Issue 2, 2020

Page: [109 - 116] Pages: 8

DOI: 10.2174/2210681208666181008143408

Price: $65

Abstract

Deformation twins and phase interface are important planar defects and microstructures that greatly influence the overall performance of a material system. In multi-layer thin-film heterostructures, their effect is more manifest due to the small dimension of thin films and their influence on the growth of multi-layer structures. This article reviews the recent progress in microstructure and defects observed in thin film heterostructures, serving as a guideline for future research in this field. The multilayer thin-film heterostructures studied here were grown by pulsed laser deposition technique. Microstructures and defects were investigated by Transmission Electron Microscopy.

Keywords: Microstructure, defects, thin-film heterostructures, pulsed-laser deposition, transmission electron microscopy, nanomaterials synthesis and characterization.

Graphical Abstract
[1]
Zhu, Y.T.; Liao, X.Z.; Wu, X.L. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci., 2012, 57(1), 1-62.
[2]
Schiøtz, J.; Di Tolla, F.D.; Jacobsen, K.W. Softening of nanocrystalline metals at very small grain sizes. Nature, 1998, 391(561), 561-563.
[3]
Liao, X.Z.; Kilmametov, A.R.; Valiev, R.Z.; Gao, H.; Li, X.; Mukherjee, A.K.; Bingert, J.F.; Zhu, Y.T. High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett., 2006, 88(2), 21909.
[4]
Chen, M.; Ma, E.; Hemker, K.J.; Sheng, H.; Wang, Y.; Cheng, X. Deformation twinning in nanocrystalline aluminum. Science (80-), 2003, 300(5623), 1275.
[5]
Misra, A.; Hirth, J.P.; Hoagland, R.G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater., 2005, 53(18), 4817-4824.
[6]
Demkowicz, M.J.; Hoagland, R.G.; Hirth, J.P. Interface Structure and radiation damage resistance in Cu-Nb multilayer nano-composite. Phys. Rev. Lett., 2008, 100 136102
[7]
Wang, J.; Hoagland, R.G.; Hirth, J.P.; Misra, A. Atomistic modeling of the interaction of glide dislocations with ‘weak’ interfaces. Acta Mater., 2008, 56(19), 5685-5693.
[8]
Demkowicz, M.J.; Argon, A.S.; Farkas, D.; Frary, M. Simulation of plasticity in nanocrystalline silicon. Philos. Mag., 2007, 87(28), 4253-4271.
[9]
Mukherjee, A.K. An examination of the constitutive equation for elevated temperature plasticity. Mater. Sci. Eng. A, 2002, 322(1), 1-22.
[10]
Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science (80-), 2004, 304(5669), 422.
[11]
Wu, X.L.; Zhu, Y.T. Inverse grain-size effect on twinning in nanocrystalline Ni. Phys. Rev. Lett., 2008, 101(2), 25503.
[12]
Zhang, J-Y.; Liu, G.; Wang, R.H.; Li, J.; Sun, J.; Ma, E. Double-inverse grain size dependence of deformation twinning in nanocrystalline Cu. Phys. Rev. B, 2010, 81(17) 172104
[13]
Ni, S.; Wang, Y.; Liao, X.; Li, H.Q.; Figueiredo, R.B.; Ringer, S.; Langdon, T.G.; Zhu, Y.T. Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals. Phys. Rev. B Condersed Mater., 2011, 84, 23.
[14]
Zhu, Y.T.; Liao, X.Z.; Srinivasan, S.G.; Lavernia, E.J. Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J. Appl. Phys., 2005, 98(3), 34319.
[15]
Zhu, Y.T.; Liao, X.Z.; Srinivasan, S.G.; Zhao, Y.H.; Baskes, M.I. Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl. Phys. Lett., 2004, 85(21), 5049-5051.
[16]
Schiøtz, J.; Jacobsen, K.W. A Maximum in the strength of nanocrystalline copper. Science (80-), 2003, 301(5638), 1357.
[17]
Wu, F.; Zhu, Y.T.; Narayan, J. Grain size effect on twin density in as-deposited nanocrystalline Cu film. Philos. Mag., 2013, 93(35), 4355-4363.
[18]
Budrovic, Z.; Van Swygenhoven, H.; Derlet, P.M.; Van Petegem, S.; Schmitt, B. Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science (80-), 2004, 304(5668), 273.
[19]
Zhu, Y.; Liao, X. Nanostructured metals: Retaining ductility. Nat. Mater., 2004, 7, 351-352.
[20]
Narayan, J. Recent progress in thin film epitaxy across the misfit scale (2011 Acta Gold Medal Paper). Acta Mater., 2013, 61(8), 2703-2724.
[21]
Zhu, Y.T.; Wu, X.L.; Liao, X.Z.; Narayan, J.; Mathaudhu, S.N.; Kecskés, L.J. Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl. Phys. Lett., 2009, 95(3), 31909.
[22]
Zhu, Y.T.; Narayan, J.; Hirth, J.P.; Mahajan, S.; Wu, X.L.; Liao, X.Z. Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Mater., 2009, 57(13), 3763-3770.
[23]
Asaro, R.J.; Suresh, S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater., 2005, 53(12), 3369-3382.
[24]
Shan, Z.; Stach, E.A.; Wiezorek, J.M.K.; Knapp, J.A.; Follstaedt, D.M.; Mao, S.X. Grain boundary-mediated plasticity in nanocrystalline nickel. Science (80-), 2004, 305(5684), 654-657.
[25]
Liao, X.Z.; Zhou, F.; Lavernia, E.J.; He, D.W.; Zhu, Y.T. Deformation twins in nanocrystalline Al. Appl. Phys. Lett., 2003, 83(24), 5062-5064.
[26]
Zhu, Y.T.; Liao, X.Z.; Valiev, R.Z. Formation mechanism of fivefold deformation twins in nanocrystalline face-centered-cubic metals. Appl. Phys. Lett., 2005, 86(10) 103112
[27]
Liao, X.Z.; Zhao, Y.H.; Zhu, Y.T.; Valiev, R.Z.; Gunderov, D.V. Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J. Appl. Phys., 2004, 96(1), 636-640.
[28]
Wu, X.; Zhu, Y.T.; Chen, M.W.; Ma, E. Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scr. Mater., 2006, 54(9), 1685-1690.
[29]
Shabib, I.; Miller, R.E. Deformation characteristics and stress–strain response of nanotwinned copper via molecular dynamics simulation. Acta Mater., 2009, 57(15), 4364-4373.
[30]
Jin, S.; Shevlin, S.; Guo, Z.X. Multiscale simulation of onset plasticity during nanoindentation of Al (001) surface. Acta Mater., 2008, 56, 4358-4368.
[31]
Lu, K.; Lu, L.; Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science (80-), 2009, 324(5925), 349-352.
[32]
Wu, F.; Wen, H.M.; Lavernia, E.J.; Narayan, J.; Zhu, Y.T. Twin intersection mechanisms in nanocrystalline fcc metals. Mater. Sci. Eng. A, 2013, 585, 292-296.
[33]
Zhu, Y.T.; Wu, X.L.; Liao, X.Z.; Narayan, L.; Kecskés, J.; Mathaudhu, S.N. Dislocation–twin interactions in nanocrystalline fcc metals. Acta Mater., 2011, 59(2), 812-821.
[34]
Wu, F.; Zhu, Y.T.; Narayan, J. Macroscopic twinning strain in nanocrystalline Cu. Mater. Res. Lett., 2014, 2(2), 63-69.
[35]
Wu, X.L.; Liao, X.Z.; Srinivasan, S.G.; Zhou, F.; Lavernia, E.J.; Valiev, R.Z.; Zhu, Y.T. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett., 2008, 100(9), 95701.
[36]
Liu, L.; Wang, J.; Gong, S.K.; Mao, S. High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett., 2011, 106 175504
[37]
Wang, J.; Li, N.; Anderoglu, O.; Zhang, X.; Misra, A.; Huang, J.Y.; Hirth, J.P. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater., 2010, 58(6), 2262-2270.
[38]
Li, B.Q.; Li, B.; Wang, Y.B.; Sui, M.L.; Ma, E. Twinning mechanism via synchronized activation of partial dislocations in face-centered-cubic materials. Scr. Mater., 2011, 64(9), 852-855.
[39]
Wu, F. Planar defects in metallic thin film heterostructures. North Carolina State University, 2014.Available from. https://repository.lib.ncsu.edu/handle/1840.16/9682
[40]
Lee, Y.F.; Wu, F.; Narayan, J.; Schwartz, J. Oxygen vacancy enhanced room-temperature ferromagnetism in Sr3SnO/c-YSZ/Si (001) heterostructures. MRS Commun., 2014, 4(01), 7-13.
[41]
Molaei, R.; Bayati, R.; Wu, F.; Narayan, J. A microstructural approach toward the effect of thickness on semiconductor-to-metal transition characteristics of VO2 epilayers. J. Appl. Phys., 2014, 115(16) 164311
[42]
Jin, Z.; Nori, S.; Lee, Y-F.; Kumar, D.; Wu, F.; Prater, J.T.; Kim, K.W.; Narayan, J. Strain induced room temperature ferromagnetism in epitaxial magnesium oxide thin films. J. Appl. Phys., 2015, 118(16) 165309
[43]
Bayati, R.; Molaei, R.; Wu, F.; Budai, J.D.; Liu, Y.; Narayan, R.J.; Narayan, J. Correlation between structure and semiconductor-to-metal transition characteristics of VO 2/TiO 2/sapphire thin film heterostructures. Acta Mater., 2013, 61(20), 7805-7815.
[44]
Gbordzoe, S.; Kotoka, R.; Craven, E.; Kumar, D.; Wu, F.; Narayan, J. Effect of substrate temperature on the microstructural properties of titanium nitride nanowires grown by pulsed laser deposition. J. Appl. Phys., 2014, 116(6), 64310.
[45]
Bayati, R.; Molaei, R.; Richmond, A.; Nori, S.; Wu, F.; Kumar, D.; Narayan, J.; Reynolds, J.G.; Reynolds, C.L., Jr Modification of properties of yttria stabilized zirconia epitaxial thin films by excimer laser annealing. ACS Appl. Mater. Interfaces, 2014, 6(24), 22316-22325.
[46]
Bayati, R.; Molaei, R.; Wu, F.; Narayan, J.; Yarmolenko, S. Dependence of semiconductor to metal transition of VO2 (011)/NiO 100/MgO 100/TiN 100/Si 100 heterostructures on thin film epitaxy and nature of strain. J. Am. Ceram. Soc., 2015, 98(4), 1201-1208.
[47]
Lee, Y.F.; Punugupati, S.; Wu, F.; Jin, Z.; Narayan, J.; Schwartz, J. Evidence for topological surface states in epitaxial Bi 2 Se 3 thin film grown by pulsed laser deposition through magneto-transport measurements. Curr. Opin. Solid State Mater. Sci., 2014, 18(5), 279-285.
[48]
Lee, Y.F.; Wu, F.; Kumar, R.; Hunte, F.; Schwartz, J.; Narayan, J. Epitaxial integration of dilute magnetic semiconductor Sr3SnO with Si (001). Appl. Phys. Lett., 2013, 103(11)112101
[49]
Anderoglu, S.; Misra, A.; Wang, H.; Zhang, X. Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys., 2008, 103(9), 94322.
[50]
Wu, F.; Yao, N. Work function of Cu3Ge thin film. Microsc. Microanal., 2016, 22(S3), 1654-1655.
[51]
Wu, F.; Cai, W.; Gao, J.; Loo, Y.; Yao, N. Nanoscale electrical properties of epitaxial Cu3Ge film. Sci. Rep., 2016, 6, 28818.
[52]
Gu, T.; Jeong, H.; Yang, K.; Wu, F.; Yao, N.; Priestley, R.D.; White, C.E.; Arnold, C.B. Anisotropic crystallization in solution processed chalcogenide thin film by linearly polarized laser. Appl. Phys. Lett., 2017, 110(4), 41904.
[53]
Wu, F.; Zheng, J.K.; Cai, W.; Yao, N.; Zhu, Y.T.; Narayan, J. Fabrication of epitaxial Cu 3 Ge on sapphire with controlled crystallinity and planar defects. J. Alloys Compd., 2015, 641, 238-243.
[54]
Wu, F.; Yao, N. Epitaxial Cu3Ge thin film: Fabrication, structure, and property. In: Nanoelectronics and Materials Development; Intech: UK, 2016.
[55]
Murarka, S.P.; Hymes, S.W. Copper metallization for ULSL and beyond. Crit. Rev. Solid State Mater. Sci., 1995, 20(2), 87-124.
[56]
Chugh, A.; Tiwari, A.; Kvit, A.; Narayan, J. A novel technique for making self-encapsulated and self-aligned copper films. Mater. Sci. Eng. B, 2003, 103(1), 45-48.
[57]
Ernst, F.; Pirouz, P.; Heuer, A.H. HRTEM study of a Cu/Al2O3 interface. 1991, 63, 259-277.
[58]
T, Mewes. Comparative study of the epitaxial growth of Cu on MgO(001) and on hydrogen terminated Si(001). Surf. Sci., 2001, 481(1), 87-96.
[59]
Kung, H.; Lu, Y-C.; Griffin, A.J.; Nastasi, M.; Mitchell, T.E.; Embury, J.D. Observation of body centered cubic Cu in Cu/Nb nanolayered composites. Appl. Phys. Lett., 1997, 71(15), 2103-2105.
[60]
Li, H.; Tian, D.; Quinn, J.; Li, Y.S.; Jona, F.; Marcus, P.M. Low-energy electron diffraction and photoemission study of epitaxial films of Cu on Ag001. Phys. Rev. B, 1991, 43(8), 6342-6346.
[61]
Hahn, E.; Kampshoff, E.; Wälchli, N.; Kern, K. Strain driven fcc-bct phase transition of pseudomorphic Cu films on Pd(100). Phys. Rev. Lett., 1995, 74(10), 1803-1806.
[62]
Misra, A.; Demkowicz, M.J.; Zhang, X.; Hoagland, R.G. The radiation damage tolerance of ultra-high strength nanolayered composites. JOM, 2007, 59(9), 62-65.
[63]
Wu, F.; Narayan, J. Controlled epitaxial growth of body-centered cubic and face-centered cubic Cu on MgO for integration on Si. Cryst. Growth Des., 2013, 13(11), 5018-5024.
[64]
Rao, S.S.; Prater, J.T.; Wu, F.; Shelton, C.T.; Maria, J-P.; Narayan, J. Interface magnetism in epitaxial BiFeO3-La0. 7Sr0. 3MnO3 Heterostructures Integrated on Si (100). Nano Lett., 2013, 13(12), 5814-5821.
[65]
Singamaneni, S.R.; Prater, J.T.; Wu, F.; Narayan, J. Ferromagnetic oxide heterostructures on silicon. MRS Commun., 2016, 6(3), 234-240.
[66]
Rao, S.S.; Prater, J.T.; Wu, F.; Nori, S.; Kumar, D.; Narayan, J. Integration of epitaxial permalloy on Si (100) through domain matching epitaxy paradigm. Curr. Opin. Solid State Mater. Sci., 2013, 18(1), 1-5.
[67]
Singamaneni, S.R.; Fan, W.; Prater, J.T.; Narayan, J. Complete vertical MH loop shift in La0. 7Sr0. 3MnO3/SrRuO3 thin film heterostructures. J. Appl. Phys., 2015, 117(17) 17B711
[68]
Rao, S.S.; Prater, J.T.; Wu, F.; Nori, S.; Kumar, D.; Yue, L.; Liou, S.H.; Narayan, J. Positive exchange bias in epitaxial permalloy/MgO integrated with Si (100). Curr. Opin. Solid State Mater. Sci., 2014, 18(3), 140-146.
[69]
Singamaneni, S.R.; Fan, W.; Prater, J.T. Narayan, J. Magnetic properties of BaTiO3/La0. 7Sr0. 3MnO3 thin films integrated on Si (100). J. Appl. Phys., 2014, 116(22) 224104
[70]
Wu, J.; Rao, S.S. Tuning exchange bias in epitaxial Ni/MgO/TiN heterostructures integrated on Si(100). Curr. Opin. Solid State Mater. Sci., 2014, 18(5), 263.
[71]
Singamaneni, S.R.; Prater, J.T.; Wu, F.; Narayan, J. Interface magnetism of two functional epitaxial ferromagnetic oxides integrated with Si (100). APS March Meet., 2014, 59, 1.
[72]
Rao, S.; Prater, S.J.T. Magnetic coupling in Epitaxial BiFeO 3 -La 0.7 Sr 0.3 MnO3 heterostructures integrated on Si(100). Bull. Am. Phys. Soc., 2014, 1 F41.00004
[73]
Wu, F.; Yao, N. PMN-PT nanostructures for energy scavenging. Semicond. Sci. Technol., 2017, 32(6), 63001.
[74]
Wu, F.; Yao, N. Advances in windowed gas cells for in-situ TEM studies. Nano Energy, 2015, 13, 735-756.
[75]
Wu, F.; Yao, N. Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery. Nano Energy, 2014, 11, 196-215.
[76]
Wu, F.; Cai, W.; Yeh, Y-W.; Xu, S.; Yao, N. Energy scavenging based on a single-crystal PMN-PT nanobelt. Sci. Rep., 2016, 6, 22513.
[77]
Wu, F.; Yao, N. In situ synthesis and defect evolution of single-crystal piezoelectric nanoparticles. Nano Energy, 2016, 28, 195-205.
[78]
Wu, F.; Yao, N. In situ transmission electron microscopy studies in gas/liquid environment. In: Microscopy and Analysis; Intech: UK, 2016.
[79]
Chen, X. Reversible flat to rippling phase transition in Fe containing layered battery electrode materials. Adv. Funct. Mater., 2018, 28(39) 1803896
[80]
Gao, M.; Chen, X.; Pan, H.; Xiang, L.; Wu, F.; Liu, Y. Ultrafine SnO 2 dispersed carbon matrix composites derived by a sol--gel method as anode materials for lithium ion batteries. Electrochim. Acta, 2010, 55(28), 9067-9074.
[81]
Wu, F.; Fitzhugh, W.; Ye, L.; Ning, J.; Li, X. Advanced sulfide solid electrolyte by core-Shell structural design. Nat. Commun., 2018. [Epub ahead of print].
[82]
Peng, S-K.; Xiao, X-Z.; Xu, R.J.; Li, L. Hydrogen storage behaviors and microstructure of MF 3 (M= Ti, Fe)-doped magnesium hydride. Trans. Nonferrous Met. Soc. China, 2010, 20(10), 1879-1884.
[83]
Liang, C. Liu, Y.; Wei, Z.; Jiang, Y.; Wu, F.; Gao, M.; Pan, H. Enhanced dehydrogenation/hydrogenation kinetics of the Mg (NH 2) 2--2LiH system with NaOH additive. Int. J. Hydrogen Energy, 2011, 36(3), 2137-2144.
[84]
Gu, T.; Gao, J.; Ostroumov, E.E.; Jeong, H.; Wu, F.; Fardel, R.; Yao, N.; Priestley, R.D.; Scholes, G.; Loo, Y.L.; Arnold, C.B. Photoluminescence of functionalized germanium nanocrystals embedded in arsenic sulfide glass. ACS Appl. Mater. Interfaces, 2017, 9(22), 18911-18917.
[85]
Zhao, L.; Yeh, Y.W.; Tran, N.L.; Wu, F.; Xiao, Z.; Kerner, R.A.; Lin, Y.L.; Scholes, G.D.; Yao, N.; Rand, B.P. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano, 2017, 11(4), 3957-3964.
[86]
He, Y.; Shi, L.; Wu, F.; Xie, W.; Wang, S.; Yan, D.; Liu, P.; Li, M.R.; Caro, J.; Luo, H. A novel dual phase membrane 40 wt% Nd0.6Sr0.4CoO3−δ–60 wt% Ce0.9Nd0.1O2−δ: Design, synthesis and properties. J. Mater. Chem. A, 2018, 6(1), 84-92.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy