Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

In vitro Characterization of Microspheres Containing Chemically Cross- Linked Gummy Exudates of Cochlospermum religiosum

Author(s): Vipin Kumar Sharma*, Bhaskar Mazumder, Vinod Nautiyal, Prince Prashant Sharma and Yusra Ahmed

Volume 9, Issue 3, 2019

Page: [217 - 228] Pages: 12

DOI: 10.2174/2210315508666181004144520

Price: $65

Abstract

Background: The polymeric hydrocolloids of natural origin such as gums and mucilages have their own significance in food and pharmaceutical industries due to safety, cost, biodegradability, biocompatibility, etc.

Objective: This study includes the assessment of feasibility of gummy exudates of Cochlospermum religiosum for development of microspheres through emulsification technique.

Methods: The effects of exudates concentration, glutaraldehyde amount and process temperature were analyzed on particle-size and swelling dynamics of developed microspheres. The formulations were also characterized by thermal decomposition and powder X-ray diffraction technique to assess the effect of crosslinking.

Results: The photomicrographs of preparations revealed the formation of microspheres with smooth, spherical and free-flowing nature. The swelling dynamics followed Fick’s diffusion mechanism for swelling media. Fourier transform infrared spectroscopy showed the formation of ether-linkage after crosslinking of exudates by glutaraldehyde. The thermogravimetric curves disclosed the formation of strong bonds during crosslinking.

Conclusion: The ease of gummy exudates of Cochlospermum religiosum for microspheres formation ascribed the potential of these formulations to incorporate therapeutic agent(s) to be applied as novel drug-carriers.

Keywords: Swelling dynamics, thermogravimetry, powder X-ray diffractometry, crosslinking, gummy exudates, thermal decomposition.

Graphical Abstract
[1]
Rajamma, A.J.; Yogesha, H.N.; Sateesha, S.B. Natural gums as sustained release carriers: Development of gastroretentive drug delivery system of ziprasidone HCl. DARU J. Pharm. Sci, 2012, 20(58), 1-9.
[2]
Malviya, R.; Srivastava, P.; Kulkarni, G.T. Application of Mucilage’s and drug delivery: A review. Adv. Biol. Res. , 2011, 5, 1-7.
[3]
Jaleh, V.; Naser, T.; Fatemeh, K. Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride. AAPS PharmSciTech, 2006, 7(1), E1-E7.
[4]
Sharma, V.K.; Bhattacharya, A. Release kinetics of metformin hydrochloride microencapsulated in Isabgol husk and sagu starch hydrophilic matrix. IDrugs, 2009, 46(11), 860-868.
[5]
Sharma, V.K.; Bhattacharya, A. Effect of cross-linkers on isabgol husk-sodium alginate matrix type drug delivery devices. Asian J. Chem., 2010, 22(10), 7661-7674.
[6]
Sharma, V.K.; Mazumder, B. Characterization of gliclazide release from Isabgol husk hydrogel beads by validated HPLC method. Acta Pol. Pharm. Drug Res, 2014, 71(1), 153-166.
[7]
Prajapati, N.D.; Purohit, S.S.; Sharma, A.K.; Kumar, T. A Hand Book of Medicinal Plants: A Complete Source Book; Agrobios: Jodhpur, 2003.
[8]
Ahmed, E.M. Hydrogel: Preparation, characterization and applications: A review. J. Adv. Res., 2015, 6, 105-121.
[9]
Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical description of hydrogel swelling: A review. Iran. Polym. J., 2010, 19(5), 375-398.
[10]
Kim, B.; Flamme, K.L.; Peppas, N.A. Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J. Appl. Polym. Sci., 2003, 89, 1606-1613.
[11]
Brazel, C.S.; Peppas, N.A. Modeling of drug release from swellable polymers. Eur. J. Pharm. Biopharm., 2000, 49, 47-58.
[12]
Yu, X.; Chen, X.; Chai, Q.; Ayres, N. Synthesis of polymer organogelators using hydrogen bonding as physical cross-links. Colloid Polym. Sci., 2016, 294(1), 59-68.
[13]
Singh, B.; Chauhan, G.S.; Bhatt, S.S.; Kumar, K. Metal ion sorption and swelling studies of psyllium and acrylic acid based hydrogels. Carbohydr. Polym., 2006, 64(1), 50-56.
[14]
Singh, B.; Chauhan, N.; Kumar, S. Radiation crosslinked psyllium and polyacrylic acid based hydrogels for use in colon specific drug delivery. Carbohydr. Polym., 2008, 73, 446-455.
[15]
Kirtikar, K.R.; Basu, B.D. In: Indian medicinal plant Cochlospermaceae,, Blatter, E., Caius, J.F., Mhaskar, K.S., editors. Bishen Singh Mahendra Pal Singh: Dehradun, India. 1998, 1, 214-215.
[16]
Hirst, E.L.; Dustan, S. The structure of karaya gum. J. Chem. Soc., 1953, 2332-2337.
[17]
Aspinall, G.O.; Hirst, E.L.; Johnston, M.J. The acidic sugar components of Cochlospermum gossypium. J. Chem. Soc., 1962, 2785-2789.
[18]
Sharma, V.K.; Mazumder, B. Feasibility and characterization of gummy exudates of Cochlospermum religiosum as pharmaceutical excipient. Ind. Crops Prod., 2013, 50, 776-786.
[19]
Sharma, V.K.; Mazumder, B. Gastrointestinal transition and anti-diabetic effect of Isabgol husk microparticles containing gliclazide. Int. J. Biol. Macromol., 2014, 66, 15-25.
[20]
Sharma, V.K.; Mazumder, B.; Nautiyal, V. Rheological characterization of Isabgol Husk, Gum Katira hydrocolloids and their blends. Int. J. Food. Sci, 2014. 1-10, Article ID 506591
[21]
Singh, B.; Chauhan, N. Dietary fiber psyllium based hydrogels for use in insulin delivery. Int. J. Diabetes Mellit., 2010, 2, 32-37.
[22]
Bharaniraja, B.; Kumar, K.J.; Prasad, C.M.; Sen, A.K. Modified katira gum for colon targeted drug delivery. J. Appl. Polym. Sci., 2011, 119, 2644-2651.
[23]
Girotra, P.; Singh, S.K. Formulation optimization for colon targeted delivery of katira gum matrix tablets containing azathioprine. Int. J. Pharm. Sci. Drug Res., 2013, 5, 133-140.
[24]
Banerjee, S.; Siddiqui, L.; Bhattacharya, S.S.; Kaity, S.; Ghosh, A.; Chattopadhyay, P.; Pande, A.; Singh, L. Interpenetrating Polymer Network (IPN) hydrogel microspheres for oral controlled release application. Int. J. Biol. Macromol., 2012, 50, 198-206.
[25]
Sharma, V.K.; Bhattacharya, A. Release of metformin hydrochloride from ispaghula-sodium alginate beads adhered on cock intestinal mucosa. Ind. J. Pharm. Edu. Res, 2008, 42, 363-370.
[26]
Sharma, V.K.; Mazumder, B. Crosslinking of Isabgol husk polysaccharides for microspheres development and its impact on particle size, swelling kinetics and thermal behavior. Polym. Bull., 2014, 71, 735-757.
[27]
Saboktakin, M.R.; Maharramov, A.; Ramazanov, M.A. pH- sensitive starch hydrogels via free radical graft copolymerization, synthesis and properties. Carbohydr. Polym., 2009, 77, 634-638.
[28]
Pîrvu, C. Evaluation of gelatin microspheres with xantinol nicotinate. Rom. J. Biophys., 2004, 14, 81-88.
[29]
Omidian, H.; Park, K. Swelling agents and devices in oral drug delivery. J. Drug Deliv. Sci. Technol., 2008, 18, 83-93.
[30]
Mi, F.L.; Kuan, C.Y.; Shyu, S.S.; Lee, S.T.; Chang, S.F. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydr. Polym., 2000, 41, 389-396.
[31]
Chien, Y.W. Novel drug delivery systems: Fundamentals, developmental concepts & biomedical assessments. Marcel Dekker Inc. New York. , 1983; 14, pp. 465-571.
[32]
Agnihotri, S.A.; Jawalkar, S.S.; Aminabhavi, T.M. Controlled release of cephalexin through gellan gum beads: Effect of formulation parameters on entrapment efficiency, size, and drug release. Eur. J. Pharm. Biopharm., 2006, 63, 249-261.
[33]
Coviello, T.; Dentini, M.; Rambone, G.; Desideri, P.; Carafa, M.; Murtas, E.; Riccieri, F.M.; Alhaique, F. A novel crosslinked polysaccharide: Studies for a controlled delivery matrix. J. Contr. Rel, 1998, 55, 57-66.
[34]
Kim, K.J.; Lee, S.B.; Han, N.W. Kinetics of crosslinking reaction of PVA membrane with glutaraldehyde. Korean J. Chem. Eng., 1994, 11, 41-47.
[35]
Lee, C.; Kung, P.H.; Lee, Y.D. Preparation of Poly (vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydr. Polym., 2005, 61, 348-354.
[36]
Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A.P. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C, 2008, 28, 539-548.
[37]
Averill, B.; Eldredge, P. General Chemistry: Principles, Patterns and Applications; Version I, Chapter 12,. , 2011.
[38]
Stamm, A.F. Wood and Cellulose Science; The Ronald Press Company: New York, 1969, pp. 132-165.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy