Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Survey of Drug Oxidation Activities in Hepatic and Intestinal Microsomes of Individual Common Marmosets, a New Nonhuman Primate Animal Model

Author(s): Shotaro Uehara, Toru Oshio, Kazuyuki Nakanishi, Etsuko Tomioka, Miyu Suzuki, Takashi Inoue, Yasuhiro Uno, Erika Sasaki and Hiroshi Yamazaki*

Volume 20, Issue 2, 2019

Page: [103 - 113] Pages: 11

DOI: 10.2174/1389200219666181003143312

Abstract

Background: Common marmosets (Callithrix jacchus) are potentially useful nonhuman primate models for preclinical studies. Information for major drug-metabolizing cytochrome P450 (P450) enzymes is now available that supports the use of this primate species as an animal model for drug development. Here, we collect and provide an overview of information on the activities of common marmoset hepatic and intestinal microsomes with respect to 28 typical human P450 probe oxidations.

Results: Marmoset P450 2D6/8-dependent R-metoprolol O-demethylation activities in hepatic microsomes were significantly correlated with those of midazolam 1′- and 4-hydroxylations, testosterone 6β-hydroxylation, and progesterone 6β-hydroxylation, which are probe reactions for marmoset P450 3A4/5/90. In marmosets, the oxidation activities of hepatic microsomes and intestinal microsomes were roughly comparable for midazolam and terfenadine. Overall, multiple forms of marmoset P450 enzymes in livers and intestines had generally similar substrate recognition functionalities to those of human and/or cynomolgus monkey P450 enzymes.

Conclusion: The marmoset could be a model animal for humans with respect to the first-pass extraction of terfenadine and related substrates. These findings provide a foundation for understanding individual pharmacokinetic and toxicological results in nonhuman primates as preclinical models and will help to further support understanding of the molecular mechanisms of human P450 function.

Keywords: Marmoset, CYP3A4, CYP2D6, CYP2C19, Polymorphism, PBPK.

Next »
Graphical Abstract
[1]
Nelson, D.R.; Zeldin, D.C.; Hoffman, S.M.G.; Maltais, L.J.; Wain, H.M.; Nebert, D.W. Comparison of cytochrome P450(CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics, 2004, 14, 1-18.
[2]
Guengerich, F.P. Cytochrome P450 and chemical toxicology. Chem. Res. Toxicol., 2008, 21(1), 70-83.
[3]
Sato, K.; Oiwa, R.; Kumita, W.; Henry, R.; Sakuma, T.; Ito, R.; Nozu, R.; Inoue, T.; Katano, I.; Sato, K.; Okahara, N.; Okahara, J.; Shimizu, Y.; Yamamoto, M.; Hanazawa, K.; Kawakami, T.; Kametani, Y.; Suzuki, R.; Takahashi, T.; Weinstein, E.J.; Yamamoto, T.; Sakakibara, Y.; Habu, S.; Hata, J.; Okano, H.; Sasaki, E. Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. Cell Stem Cell, 2016, 19(1), 127-138.
[4]
Kurata, Y.; Makinodan, F.; Shimamura, N.; Katoh, M. Metabolism of di(2-ethylhexyl) phthalate(DEHP): Comparative study in juvenile and fetal marmosets and rats. J. Toxicol. Sci., 2012, 37(1), 33-49.
[5]
Shimizu, M.; Iwano, S.; Uno, Y.; Uehara, S.; Inoue, T.; Murayama, N.; Onodera, J.; Sasaki, E.; Yamazaki, H. Qualitative de novo analysis of full length cDNA and quantitative analysis of gene expression for common marmoset(Callithrix jacchus) transcriptomes using parallel long-read technology and short-read sequencing. PLoS One, 2014, 9(6), e100936.
[6]
Uehara, S.; Uno, Y.; Inoue, T.; Murayama, N.; Shimizu, M.; Sasaki, E.; Yamazaki, H. Activation and deactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by cytochrome P450 enzymes and flavin-containing monooxygenases in common marmosets (Callithrix jacchus). Drug Metab. Dispos., 2015, 43, 735-742.
[7]
Uno, Y.; Iwasaki, K.; Yamazaki, H.; Nelson, D.R. Macaque cytochromes P450: Nomenclature, transcript, gene, genomic structure, and function. Drug Metab. Rev., 2011, 43, 346-361.
[8]
Uno, Y.; Uehara, S.; Yamazaki, H. Utility of non-human primates in drug development: comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochem. Pharmacol., 2016, 121, 1-7.
[9]
Uehara, S.; Inoue, T.; Utoh, M.; Toda, A.; Shimizu, M.; Uno, Y.; Sasaki, E.; Yamazaki, H. Simultaneous pharmacokinetics evaluation of human cytochrome P450 probes, caffeine, warfarin, omeprazole, metoprolol, and midazolam, in common marmosets (Callithrix jacchus). Xenobiotica, 2016, 46, 163-168.
[10]
Utoh, M.; Suemizu, H.; Mitsui, M.; Kawano, M.; Toda, A.; Uehara, S.; Uno, Y.; Shimizu, M.; Sasaki, E.; Yamazaki, H. Human plasma concentrations of cytochrome P450 probe cocktails extrapolated from pharmacokinetics in mice transplanted with human hepatocytes and from pharmacokinetics in common marmosets using physiologically based pharmacokinetic modeling. Xenobiotica, 2016, 46, 1049-1055.
[11]
Obach, R.S.; Lombardo, F.; Waters, N.J. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab. Dispos., 2008, 36(7), 1385-1405.
[12]
Uehara, S.; Uno, Y.; Inoue, S.; Kawano, M.; Shimizu, M.; Toda, A.; Utoh, M.; Sasaki, E.; Yamazaki, H. Novel marmoset cytochrome P450 2C19 in livers efficiently metabolizes human P450 2C9 and 2C19 substrates, S-warfarin, tolbutamide, flurbiprofen, and omeprazole. Drug Metab. Dispos., 2015, 43, 1408-1416.
[13]
Uehara, S.; Uno, Y.; Inoue, T.; Kawano, M.; Shimizu, M.; Toda, A.; Utoh, M.; Sasaki, E.; Yamazaki, H. Individual differences in metabolic clearance of S-warfarin efficiently mediated by polymorphic marmoset cytochrome P450 2C19 in livers. Drug Metab. Dispos., 2016, 44, 911-915.
[14]
Kusama, T.; Toda, A.; Shimizu, M.; Uehara, S.; Inoue, T.; Uno, Y.; Utoh, M.; Sasaki, E.; Yamazaki, H. Association with polymorphic marmoset cytochrome P450 2C19 of in vivo hepatic clearances of chirally separated R-omeprazole and S-warfarin using individual marmoset physiologically based pharmacokinetic models. Xenobiotica, 2018, 48(10), 1072-1077.
[15]
Toda, A.; Uehara, S.; Inoue, T.; Utoh, M.; Kusama, T.; Shimizu, M.; Uno, Y.; Mogi, M.; Sasaki, E.; Yamazaki, H. Effects of aging and rifampicin pretreatment on the pharmacokinetics of human cytochrome P450 probes caffeine, warfarin, omeprazole, metoprolol, and midazolam in common marmosets genotyped for cytochrome P450 2C19. Xenobiotica, 2018, 48, 720-726.
[16]
Uehara, S.; Uno, Y.; Suzuki, T.; Inoue, S.; Utoh, M.; Sasaki, E.; Yamazaki, H. Strong induction of cytochrome P450 1A/3A, but not P450 2B, in cultured hepatocytes from common marmosets and cynomolgus monkeys by typical human P450 inducing agents. Drug Metab. Lett., 2016, 10, 244-253.
[17]
Uehara, S.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Substrate selectivities and catalytic activities of marmoset liver cytochrome P450 2A6 differed from those of human P450 2A6. Drug Metab. Dispos., 2015, 43, 969-976.
[18]
Uehara, S.; Uno, Y.; Hagihira, Y.; Murayama, N.; Shimizu, M.; Inoue, T.; Sasaki, E.; Yamazaki, H. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol, and dextromethorphan. Xenobiotica, 2015, 45, 766-772.
[19]
Uehara, S.; Uno, Y.; Yuki, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. A new marmoset P450 4F12 enzyme expressed in small intestines and livers efficiently metabolizes an anti-histaminic drug ebastine. Drug Metab. Dispos., 2016, 44, 833-841.
[20]
Uehara, S.; Uno, Y.; Inoue, T.; Suzuki, T.; Utoh, M.; Sasaki, E.; Yamazaki, H. Caffeine 7-N-demethylation and C-8-oxidation mediated by liver microsomal cytochrome P450 enzymes in common marmosets. Xenobiotica, 2016, 46, 573-578.
[21]
Uehara, S.; Kawano, M.; Murayama, N.; Uno, Y.; Utoh, M.; Inoue, T.; Sasaki, E.; Yamazaki, H. Oxidation of R- and S-omeprazole stereoselectively mediated by liver microsomal cytochrome P450 2C19 enzymes from cynomolgus monkeys and common marmosets. Biochem. Pharmacol., 2016, 120, 56-62.
[22]
Uehara, S.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Molecular cloning, tissue distribution, and functional characterization of marmoset cytochrome P450 1A1, 1A2, and 1B1. Drug Metab. Dispos., 2016, 46, 8-15.
[23]
Uehara, S.; Uno, Y.; Inoue, T.; Okamoto, E.; Sasaki, E.; Yamazaki, H. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine. Xenobiotica, 2016, 46, 977-985.
[24]
Uehara, S.; Uno, Y.; Nakanishi, K.; Ishii, S.; Inoue, T.; Sasaki, E.; Yamazaki, H. Marmoset cytochrome P450 3A4 orthologue expressed in liver and small intestine tissues efficiently metabolizes midazolam, alprazolam, nifedipine, and testosterone. Drug Metab. Dispos., 2017, 45, 457-467.
[25]
Uehara, S.; Uno, Y.; Ishii, S.; Inoue, T.; Sasaki, E.; Yamazaki, H. Marmoset cytochrome P450 4A11, a novel arachidonic acid and lauric acid ω-hydroxylase expressed in liver and kidney tissues. Xenobiotica, 2017, 47, 553-561.
[26]
Uehara, S.; Uno, Y.; Tomioka, E.; Inoue, T.; Sasaki, E.; Yamazaki, H. Functional characterization and tissue expression of marmoset cytochrome P450 2E1. Biopharm. Drug Dispos., 2017, 38, 394-397.
[27]
Uehara, S.; Ishii, S.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Regio- and stereo-selective oxidation of a cardiovascular drug metoprolol mediated by cytochrome P450 2D and 3A enzymes in marmoset livers. Drug Metab. Dispos., 2017, 45, 896-899.
[28]
Nakanishi, K.; Uehara, S.; Kusama, T.; Inoue, T.; Shimura, K.; Kamiya, Y.; Murayama, N.; Shimizu, M.; Uno, Y.; Sasaki, E.; Yamazaki, H. In vivo and in vitro diclofenac 5-hydroxylation mediated primarily by cytochrome P450 3A enzymes in common marmoset livers genotyped for P450 2C19 variants. Biochem. Pharmacol., 2018, 152, 272-278.
[29]
Nakanishi, K.; Uehara, S.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Progesterone hydroxylation by cytochromes P450 2C and 3A enzymes in marmoset liver microsomes. Xenobiotica, 2018, 48, 757-763.
[30]
Oshio, T.; Uehara, S.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Marmoset cytochrome P450 2B6, a propofol hydroxylase expressed in liver. Xenobiotica, 2019, 49(3), 265-269.
[31]
Uehara, S.; Uno, Y.; Oshio, T.; Inoue, T.; Sasaki, E.; Yamazaki, H. Marmoset pulmonary cytochrome P450 2F1 oxidizes biphenyl and 7-ethoxycoumarin and hepatic human P450 substrates. Xenobiotica, 2018, 48, 656-662.
[32]
Uehara, S.; Yuki, Y.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Terfenadine t-butyl hydroxylation catalyzed by human and marmoset cytochrome P450 3A and 4F enzymes in livers and small intestines. Xenobiotica, 2018, 48, 342-347.
[33]
Uehara, S.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Correction to “Molecular cloning, tissue distribution, and functional characterization of marmoset cytochrome P450 1A1, 1A2, and 1B1”. Drug Metab. Dispos., 2017, 45, 956.
[34]
Utoh, M.; Murayama, N.; Uno, Y.; Onose, Y.; Hosaka, S.; Fujino, H.; Shimizu, M.; Iwasaki, K.; Yamazaki, H. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline. Xenobiotica, 2013, 43, 1037-1042.
[35]
Uehara, S.; Shimizu, M.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Marmoset flavin-containing monooxygenase 3 in liver is a major benzydamine and sulindac sulfide oxygenase. Drug Metab. Dispos., 2017, 45, 497-500.
[36]
Uehara, S.; Uno, Y.; Okamoto, E.; Inoue, T.; Sasaki, E.; Yamazaki, H. Molecular cloning and characterization of marmoset aldehyde oxidase. Drug Metab. Dispos., 2017, 45, 883-886.
[37]
Uehara, S.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Cloning and expression of a novel catechol-O-methyltransferase in common marmosets. J. Vet. Med. Sci., 2017, 79, 267-272.
[38]
Uehara, S.; Uno, Y.; Inoue, T.; Sasaki, E.; Yamazaki, H. Molecular cloning and tissue distribution of a novel marmoset ABC transporter. Biopharm. Drug Dispos., 2018, 39, 59-63.
[39]
Uehara, S.; Murayama, N.; Yamazaki, H.; Uno, Y. A novel CYP2A26 identified in cynomolgus monkey liver metabolizes coumarin. Xenobiotica, 2010, 40, 621-629.
[40]
Uno, Y.; Uehara, S.; Kohara, S.; Iwasaki, K.; Nagata, R.; Fukuzaki, K.; Utoh, M.; Murayama, N.; Yamazaki, H. Newly identified CYP2C93 is a functional enzyme in rhesus monkey, but not in cynomolgus monkey. PLoS One, 2011, 6, e16923.
[41]
Hosoi, Y.; Uno, Y.; Murayama, N.; Fujino, H.; Shukuya, M.; Iwasaki, K.; Shimizu, M.; Utoh, M.; Yamazaki, H. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation. Biochem. Pharmacol., 2012, 84, 1691-1695.

© 2024 Bentham Science Publishers | Privacy Policy