A Novel Image Classification Approach for Maize Diseases Recognition

(E-pub Ahead of Print)

Author(s): Yuchen Wei, Lisheng Wei*, Tao Ji, Huosheng Hu.

Journal Name: Recent Advances in Electrical & Electronic Engineering
Formerly Recent Patents on Electrical & Electronic Engineering

Become EABM
Become Reviewer


Background: The spot, streak and rust are the most common diseases in maize, all of which require effective methods to recognize, diagnose and handle. This paper presents a novel image classification approach to the high accuracy recognition of these maize diseases. Methods: Firstly, the k-means clustering algorithm is deployed in LAB color space to reduce the influence of image noise and irrelevant background, so that the area of maize diseases could be effectively extracted. Then the statistic pattern recognition method and gray level co-occurrence matrix (GLCM) method are jointly used to segment the maize disease leaf images for accurately obtaining their texture, shape and color features. Finally, support vector machine (SVM) classification method is used to identify three diseases. Results: Numerical results clearly demonstrate the feasibility and effectiveness of the proposed method.

Keywords: Maize Diseases, Image Processing, Color Segmentation, Gray Level Co-occurrence Matrix, Feature Extraction, Support Vector Machine

Rights & PermissionsPrintExport Cite as

Article Details

(E-pub Ahead of Print)
DOI: 10.2174/2352096511666181003134208
Price: $95