Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Molecular Conformational Analysis, Spectroscopic Characterization, Intramolecular Hydrogen Bonding and Natural Bond Analysis of (E,Z)-2-(4- Amino-5-oxo-3-(thiophene-2-ylmethyl)-4,5-dihydro-1,2,4-triazole-1-yl)-N'- (thiophene-2-ylmethylene) Acetohydrazide

Author(s): Abdurrahman Atalay*, Fatih Çelik, Yasemin Ünver, Kemal Sancak and Kamil Kaygusuz

Volume 16, Issue 3, 2019

Page: [215 - 225] Pages: 11

DOI: 10.2174/1570178615666181002141949

Price: $65

Abstract

The optimized structural parameters and electronic properties including frontier molecular orbital (FMO) analysis, molecular electrostatic potential and NBO charge analysis of (E,Z)-2-(4- amino-5-oxo-3-(thiophene-2-ylmethyl)-4,5-dihydro-1,2,4-triazole-1-yl)-N'-(thiophene-2-ylmethylene) acetohydrazide were investigated by using density functional theory (DFT) at B3LYP/6-311++G(d,p) level. The global reactivity parameters were evaluated in accordance with the energy values of HOMO and LUMO of each determined conformer. The molecule was experimentally characterized by means of FT-IR and NMR spectroscopic methods and also theoretically by B3LYP/6-311++G(d,p) and B3LYP/cc-pVTZ method (FT-IR and NMR, respectively). The theoretical results of spectroscopic analysis show good agreement with experimental outcomes. The natural bond orbital (NBO) analyses for studied conformers were performed at B3LYP/6-311++G(d,p) level to find hyperconjugative interactions as well as intramolecular hydrogen bond interaction. Besides, theoretical results indicate that the optimized structure of conformer E and Z possesses N‒H···N and N‒H···S weak hydrogen bonding, respectively.

Keywords: DFT, conformational analysis, 1, 2, 4-triazole, NBO, intramolecular hydrogen bonding, NMR.

Graphical Abstract
[1]
Ünver, Y.; Dügdü, E. E; Sancak, K.E.M.; Karaoglu, S.A. Turk. J. Chem., 2009, 33, 135-147.
[2]
Ünver, Y.; Dügdü, E.; Sancak, K.E.M.; Karaoglu, S.A. Turk. J. Chem., 2008, 32, 441-455.
[3]
Ünver, Y.; Dügdü, E.; Sancak, K.E.M.; Ustabas¸, R. Turk. J. Chem., 2010, 34, 551-563.
[4]
Hiremath, S.P.; Sekhar, R.K.; Sonar, V.N.; Purohit, M.G. Indian J. Chem., 1990, 29B, 372-375.
[5]
Ahluwalia, V.K.; Mann, S.B.; Bala, S. Indian J. Chem., 1989, 28B, 247-251.
[6]
Kumamoto, T.; Toyoka, K.; Nishida, M.; Kuwahara, H.; Yoshimura, Y.; Kawada, J. Chem. Pharm. Bull. (Tokyo), 1990, 38, 2595-2596.
[7]
Pathak, U.S.; Devani, M.B.; Shishoo, C.J.; Shah, S.A. Indian J. Chem., 1989, 28B, 83-86.
[8]
Kane, J.M.; Dudley, M.W.; Sorensen, S.M.; Miller, F.P. J. Med. Chem., 1988, 31, 1253-1258.
[9]
Sorensen, S.M.; Zwolshen, J.M.; Kane, J.M. Neuropharmacology, 1990, 29, 555-560.
[10]
Sancak, K.; Ünver, Y.; Ünlüer, D.; Dügdü, E.; Kör, G.; Çelik, F.; Birinci, E. Turk. J. Chem., 2012, 36, 457-466.
[11]
Sancak, K.; Ünver, Y.; Kazak, C.; Dügdü, E.; Arslan, B. Turk. J. Chem., 2010, 34, 771-780.
[12]
Li, W.; Wu, Q.; Ye, Y.; Luo, M.; Hu, L.; Gu, Y.; Niu, F. Spectrochim. Acta A, 2004, 60, 2343-2354.
[13]
Kritsanida, M.; Mouroutsou, A.; Marakos, P.; Pouli, N.; Papakonstantinou-Garoufalias, C.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. II Farmaco, 2002, 57, 253-257.
[14]
Holla, B.S.; Poorjary, K.N.; Rao, B.S.; Shivananda, M.K. Eur. J. Med. Chem., 2002, 37, 511-517.
[15]
Kaplanek, R.; Havlik, M.; Dolensky, B.; Rak, J.; Dzubak, P.; Konecny, P.; Hajduch, M.; Kralova, J.; Kral, V. Bioorg. Med. Chem., 2015, 23, 1651-1659.
[16]
Hunoor, R.S.; Patil, B.R.; Badiger, D.S.; Muchchandi, I.; Gudasi, K.B. Appl. Organomet. Chem., 2015, 29, 101-108.
[17]
Parrilha, G.L.; Vieira, R.P.; Rebolledo, A.P.; Mendes, I.C.; Lima, L.M.; Barreiro, E.J.; Piro, O.E.; Castellano, E.E.; Beraldo, H. Polyhedron, 2011, 30, 1891-1898.
[18]
Mishra, M.; Tiwari, K.; Shukla, S.; Mishra, R.; Singh, V.P. Spectrochim. Acta Mol. Biomol. Spectrosc., 2014, 132, 452-464.
[19]
Netalkar, P.P.; Kamath, A.; Netalkar, S.P.; Revankar, V.K. Spectrochim. Acta Mol. Biomol. Spectrosc., 2012, 97, 762-770.
[20]
Li, Y-H.; Wang, B-D.; Yang, Z-Y. Spectrochim. Acta Mol. Biomol. Spectrosc., 2007, 67, 395-401.
[21]
Ünver, Y.; Sancak, K.; Çelik, F.; Birinci, E.; Küçük, M.; Soylu, S.; Arslan, B.N. Eur. J. Med. Chem., 2014, 84, 639-650.
[22]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. JrMontgomery, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, Ö.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople; J.A. Gaussian Inc.: Pittsburgh, PA, 2003.
[23]
Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1994.
[24]
Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. J. Comput. Chem., 1983, 4, 294-301.
[25]
Reed, A.E.; Curtiss, L.A.; Weinhold, F. Chem. Rev., 1988, 88, 899-926.
[27]
McWeeny, R. Phys. Rev., 1962, 126, 1028-1034.
[28]
Dodds, J.L.; McWeeny, R.; Sadlej, A.J. Mol. Phys., 1977, 41, 1779-1791.
[29]
Jaffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.
[30]
Lewis, D.F.V.; Ioannides, C.; Parke, D.V. Xenobiotica, 1994, 24, 401-408.
[31]
Pearson, R.G. J. Am. Chem. Soc., 1985, 107, 6801-6806.
[32]
Parthasarathi, R.; Subramanian, V.; Roy, D.R.; Chattaraj, P.K. Bioorg. Med. Chem., 2004, 12, 5533-5543.
[33]
Parthasarathi, R.; Padmanabhan, J.; Elango, M.; Subramanian, V.; Chattarajan, P. Chem. Phys. Lett., 2004, 394, 225-230.
[34]
Parr, R.G.; Pearson, R.G. J. Am. Chem. Soc., 1983, 105, 7512-7516.
[35]
Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
[36]
Parr, R.G.; Szentpaly, L.V.; Liu, S. J. Am. Chem. Soc., 1999, 121, 1922-1924.
[37]
Politzer, P.; Lane, P. Struct. Chem., 1990, 1, 159-164.
[38]
Muthuraja, P.; Beaula, T.J.; Balachandar, S.; Jothy, V.B.; Dhandapani, M. J. Mol. Struct., 2017, 1146, 723-734.
[39]
Avdovic, E.H.; Milenkovic, D.; Dimitric-Markovic, J.M.; Vukovic, N.; Trifunovic, S.R.; Markovic, Z. J. Mol. Struct., 2017, 1147, 69-75.
[40]
Snehalatha, M.; Ravikumar, C.; Joe, I.H.; Sekar, N.; Jayakumar, V.S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 72, 654-662.
[41]
Paul, B.K.; Guchhait, N. Comput. Theor. Chem., 2011, 972, 1-13.
[42]
Szafran, M.; Komasa, A.; Adamska, E.B. J. Mol. Struct. (Theochem.), 2007, 827, 101-107.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy