Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

General Review Article

Pathological Perturbations in Diabetic Retinopathy: Hyperglycemia, AGEs, Oxidative Stress and Inflammatory Pathways

Author(s): Nikhil Shri Sahajpal, Rajesh Kumar Goel, Alka Chaubey, Rohan Aurora and Subheet Kumar Jain*

Volume 20, Issue 1, 2019

Page: [92 - 110] Pages: 19

DOI: 10.2174/1389203719666180928123449

Price: $65

Abstract

Diabetic retinopathy (DR) remains the leading cause of blindness in working-aged adults around the world. The proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME) are the severe vision threatening stages of the disorder. Although, a huge body of research exists in elaborating the pathological mechanisms that lead to the development of DR, the certainty and the correlation amongst these pathways remain ambiguous. The complexity of DR lies in the multifactorial pathological perturbations that are instrumental in both the disease development and its progression. Therefore, a holistic perspective with an understanding of these pathways and their correlation may explain the pathogenesis of DR as a unifying mechanism. Hyperglycemia, oxidative stress and inflammatory pathways are the crucial components that are implicated in the pathogenesis of DR. Of these, hyperglycemia appears to be the initiating central component around which other pathological processes operate. Thus, this review discusses the role of hyperglycemia, oxidative stress and inflammation in the pathogenesis of DR, and highlights the cross-talk amongst these pathways in an attempt to understand the complex interplay of these mechanisms. Further, an effort has been made to identify the knowledge gap and the key players in each pathway that may serve as potential therapeutic drug targets.

Keywords: Pathophysiology, hyperglycemia, polyol pathway, hexosamine pathway, AGEs, oxidative stress, inflammation, cross-talk.

Graphical Abstract
[1]
José Pedro De La Cruz, M.D.; José Antonio González‐Correa, M.D.; Guerrero, A.; Felipe Sánchez de la Cuesta, M.D. Pharmacological approach to diabetic retinopathy. Diabetes Metab. Res. Rev., 2004, 20(2), 91-113.
[2]
Kobrin Klein, B.E. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol., 2007, 14(4), 179-183.
[3]
Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; Haffner, S.; Hamman, R.F.; Ikram, M.K.; Kayama, T.; Klein, B.E.; Klein, R.; Krishnaiah, S.; Mayurasakorn, K.; O’Hare, J.P.; Orchard, T.J.; Porta, M.; Rema, M.; Roy, M.S.; Sharma, T.; Shaw, J.; Taylor, H.; Tielsch, J.M.; Varma, R.; Wang, J.J.; Wang, N.; West, S.; Xu, L.; Yasuda, M.; Zhang, X.; Mitchell, P.; Wong, T.Y. Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 2012, 35(3), 556-564.
[4]
Vision impairment and blindness. Fact Sheet 2017. World Health Organization. http://www.who.int/mediacentre/factsheets/fs282/en/ (Accessed April 23, 2018)
[5]
Hautala, N.; Hannula, V.; Palosaari, T.; Ebeling, T.; Falck, A. Prevalence of diabetic retinopathy in young adults with type 1 diabetes since childhood: The Oulu cohort study of diabetic retinopathy. Acta Ophthalmol., 2014, 92(8), 749-752.
[6]
Dedov, I.; Maslova, O.; Suntsov, Y.; Bolotskaia, L.; Milenkaia, T.; Besmertnaia, L. Prevalence of diabetic retinopathy and cataract in adult patients with type 1 and type 2 diabetes in Russia. Rev. Diabet. Stud., 2009, 6(2), 124-129.
[7]
Roy, M.S.; Klein, R.; O’Colmain, B.J.; Klein, B.E.; Moss, S.E.; Kempen, J.H. The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States. Arch. Ophthalmol., 2004, 122(4), 546-551.
[8]
Kempen, J.H.; O’Colmain, B.J.; Leske, M.C.; Haffner, S.M.; Klein, R.; Moss, S.E.; Taylor, H.R.; Hamman, R.F. Eye Diseases Prevalence Research Group The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol., 2004, 122(4), 552-563.
[9]
Zhang, X.; Saaddine, J.B.; Chou, C.F.; Cotch, M.F.; Cheng, Y.J.; Geiss, L.S.; Albright, A.L.; Klein, B.E.; Klein, R. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA, 2010, 304(6), 649-656.
[10]
Kung, K.; Chow, K.M.; Hui, E.M.; Leung, M.; Leung, S.Y.; Szeto, C.C.; Lam, A.; Li, P.K. Prevalence of complications among Chinese diabetic patients in urban primary care clinics: A cross-sectional study. BMC Fam. Pract., 2014, 15, 8.
[11]
Jee, D.; Lee, W.K.; Kang, S. Prevalence and risk factors for diabetic retinopathy: The Korea National Health and Nutrition Examination Survey 2008-2011. Invest. Ophthalmol. Vis. Sci., 2013, 54(10), 6827-6833.
[12]
Raman, R.; Rani, P.K.; Reddi Rachepalle, S.; Gnanamoorthy, P.; Uthra, S.; Kumaramanickavel, G.; Sharma, T. Prevalence of diabetic retinopathy in India: Sankara Nethralaya diabetic retinopathy epidemiology and molecular genetics study report 2. Ophthalmology, 2009, 116(2), 311-318.
[13]
Liu, L.; Wu, X.; Liu, L.; Geng, J.; Yuan, Z.; Shan, Z.; Chen, L. Prevalence of diabetic retinopathy in mainland China: a meta-analysis. PLoS One, 2012, 7(9), e45264.
[14]
Wang, F.H.; Liang, Y.B.; Zhang, F.; Wang, J.J.; Wei, W.B.; Tao, Q.S.; Sun, L.P.; Friedman, D.S.; Wang, N.L.; Wong, T.Y. Prevalence of diabetic retinopathy in rural China: The Handan Eye Study. Ophthalmology, 2009, 116(3), 461-467.
[15]
Raman, R.; Ganesan, S.; Pal, S.S.; Kulothungan, V.; Sharma, T. Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2. BMJ Open Diabetes Res. Care, 2014, 2(1), e000005.
[16]
Rema, M.; Premkumar, S.; Anitha, B.; Deepa, R.; Pradeepa, R.; Mohan, V. Prevalence of diabetic retinopathy in urban India: The Chennai Urban Rural Epidemiology Study (CURES) eye study. Invest. Ophthalmol. Vis. Sci., 2005, 46(7), 2328-2333.
[17]
Dandona, L.; Dandona, R.; Naduvilath, T.J.; McCarty, C.A.; Rao, G.N. Population based assessment of diabetic retinopathy in an urban population in southern India. Br. J. Ophthalmol., 1999, 83, 937-940.
[18]
Narendran, V.; John, R.K.; Raghuram, A.; Ravindran, R.D.; Nirmalan, P.K.; Thulasiraj, R.D. Diabetic retinopathy among self reported diabetics in southern India: A population based assessment. Br. J. Ophthalmol., 2002, 86, 1014-1018.
[19]
Gadkari, S.S.; Maskati, Q.B.; Nayak, B.K. Prevalence of diabetic retinopathy in India: The all India ophthalmological society diabetic retinopathy eye screening study 2014. Indian J. Ophthalmol., 2016, 64(1), 38.
[20]
Klein, R.; Knudtson, M.D.; Lee, K.E.; Gangnon, R.; Klein, B.E. The Wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology, 2008, 115(11), 1859-1868.
[21]
Broe, R.; Rasmussen, M.L.; Frydkjaer-Olsen, U.; Olsen, B.S.; Mortensen, H.B.; Peto, T.; Grauslund, J. The 16-year incidence, progression and regression of diabetic retinopathy in a young population-based Danish cohort with type 1 diabetes mellitus: The Danish cohort of pediatric diabetes 1987 (DCPD1987). Acta Diabetol., 2014, 51(3), 413-420.
[22]
Thomas, R.L.; Dunstan, F.; Luzio, S.D.; Chowdury, R.S.; Hale, S.L.; North, R.V.; Gibbins, R.L.; Owens, D.R. Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the diabetic retinopathy screening service for wales: Retrospective analysis. BMJ, 2012, 344, e874.
[23]
Jones, C.D.; Greenwood, R.H.; Misra, A.; Bachmann, M.O. Incidence and progression of diabetic retinopathy during 17 years of a population-based screening program in England. Diabetes Care, 2012, 35(3), 592-596.
[24]
Salinero-Fort, M.A.; San Andres-Rebollo, F.J.; de Burgos-Lunar, C.; Arrieta-Blanco, F.J.; Gomez-Campelo, P. Four-year incidence of diabetic retinopathy in a Spanish cohort: the MADIABETES study. PLoS One, 2013, 8(10), e76417.
[25]
Xu, J.; Xu, L.; Wang, Y.X.; You, Q.S.; Jonas, J.B.; Wei, W.B. Ten-year cumulative incidence of diabetic retinopathy. The Beijing Eye Study 2001/2011. PLoS One, 2014, 9(10), e111320.
[26]
Sahajpal, N.S.; Chaubey, A.; Goel, R.K.; Jain, S.K. Diabetic retinopathy. How far are we from personalized medicine. Fut Med. Chem., 2018, 10(19), 2249-2252.
[27]
Romero-Aroca, P.; Baget-Bernaldiz, M.; Fernandez-Ballart, J.; Plana-Gil, N. Soler- Lluis, N.; Mendez-Marin, I.; Bautista-Perez, A. Ten-year incidence of diabetic retinopathy and macular edema. Risk factors in a sample of people with type 1 diabetes. Diabetes Res. Clin. Pract., 2011, 94(1), 126-132.
[28]
Olsen, B.S.; Sjolie, A.K.; Hougaard, P.; Johannesen, J.; Marinelli, K.; Jacobsen, B.B.; Mortensen, H.B. Danish Study Group of Diabetes in Childhood. The significance of the prepubertal diabetes duration for the development of retinopathy and nephropathy in patients with type 1 diabetes. J. Diabetes Complications, 2004, 18(3), 160-164.
[29]
Donaghue, K.C.; Fairchild, J.M.; Craig, M.E.; Chan, A.K.; Hing, S.; Cutler, L.R.; Howard, N.J.; Silink, M. Do all prepubertal years of diabetes duration contribute equally to diabetes complications? Diabetes Care, 2003, 26(4), 1224-1229.
[30]
Harjutsalo, V.; Maric, C.; Forsblom, C.; Thorn, L.; Waden, J.; Groop, P.H. Sex-related differences in the long-term risk of microvascular complications by age at onset of type 1 diabetes. Diabetologia, 2011, 54(8), 1992-1999.
[31]
Egan, A.M.; McVicker, L.; Heerey, A.; Carmody, L.; Harney, F.; Dunne, F.P. Diabetic retinopathy in pregnancy: A population-based study of women with pregestational diabetes. In: J. Diabetes Res; , 2015. Article ID 310239, 7 pages.
[32]
Mohamed, Q.; Gillies, M.C.; Wong, T.Y. Management of diabetic retinopathy: A systematic review. JAMA, 2007, 298(8), 902-916.
[33]
Diabetes Control and Complications Trial Research Group. Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993, 329(14), 977-986.
[34]
ADVANCE Collaborative Group Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; Hamet, P.; Harrap, S.; Heller, S.; Liu, L.; Mancia, G.; Mogensen, C.E.; Pan, C.; Poulter, N.; Rodgers, A.; Williams, B.; Bompoint, S.; de Galan, B.E.; Joshi, R.; Travert, F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med., 2008, 358(24), 2560-2572.
[35]
Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, Jr , D.C.; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; Grimm, R.H. Jr, Probstfield, J.L.; Simons-Morton, D.G.; Friedewald, W.T. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med., 2008, 358(24), 2545-2559.
[36]
Stratton, I.M.; Kohner, E.M.; Aldington, S.J.; Turner, R.C.; Holman, R.R.; Manley, S.E.; Matthews, D.R. UKPDS 50: Risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia, 2001, 44(2), 156-163.
[37]
Tudor, S.M.; Hamman, R.F.; Baron, A.; Johnson, D.W.; Shetterly, S.M. Incidence and progression of diabetic retinopathy in Hispanics and non-Hispanic whites with type 2 diabetes. San Luis Valley Diabetes Study, Colorado. Diabetes Care, 1998, 21(1), 53-61.
[38]
Kajiwara, A.; Miyagawa, H.; Saruwatari, J.; Kita, A.; Sakata, M.; Kawata, Y.; Oniki, K.; Yoshida, A.; Jinnouchi, H. Nakagawa, Ket al. Gender differences in the incidence and progression of diabetic retinopathy among Japanese patients with type 2 diabetes mellitus: A clinic-based retrospective longitudinal study. Diabetes Res. Clin. Pract., 2014, 103(3), e7-e10.
[39]
Romero-Aroca, P.; Baget-Bernaldiz, M.; Fernandez-Ballart, J.; Plana-Gil, N.; Soler-Lluis, N.; Mendez-Marin, I.; Bautista-Perez, A. Ten-year incidence of diabetic retinopathy and macular edema. Risk factors in a sample of people with type 1 diabetes. Diabetes Res. Clin. Pract., 2011, 94(1), 126-132.
[40]
Jin, P.; Peng, J.; Zou, H.; Wang, W.; Fu, J.; Shen, B.; Bai, X.; Xu, X.; Zhang, X. The 5-year onset and regression of diabetic retinopathy in Chinese type 2 diabetes patients. PLoS One, 2014, 9(11), e113359.
[41]
[No authors listed] Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ, 1998, 317(7160), 703-713. Erratum in BMJ, 1999, 318(7175), 29.
[42]
Chaturvedi, N.; Porta, M.; Klein, R.; Orchard, T.; Fuller, J.; Parving, H.H.; Bilous, R.; Sjølie, A.K. DIRECT Programme Study Group. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT- Protect 1) of retinopathy in type 1 diabetes: Randomised, placebo-controlled trials. Lancet, 2008, 372(9647), 1394-1402.
[43]
Sjolie, A.K.; Klein, R.; Porta, M.; Orchard, T.; Fuller, J.; Parving, H.H.; Bilous, R.; Chaturvedi, N. DIRECT Programme Study Group Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): A randomised placebo-controlled trial. Lancet, 2008, 372(9647), 1385-1393.
[44]
Cheung, N.; Wong, T.Y. Obesity and eye diseases. Surv. Ophthalmol., 2007, 52(2), 180-195.
[45]
Ding, J.; Wong, T.Y. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep., 2012, 12(4), 346-354.
[46]
Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive, and resilient. J. Diabetes Res., 2007, 2007, 61038.
[47]
Gabbay, K.H. The sorbitol pathway and the complications of diabetes. N. Engl. J. Med., 1973, 288(16), 831-836.
[48]
Oates, P.J. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol., 2002, 50, 325-392.
[49]
Gabbay, K.H. Purification and immunological identification of bovine retinal aldose reductase. Isr. J. Med. Sci., 1972, 8(8), 1626.
[50]
Travis, S.F.; Morrison, A.D.; Clements, R.S.; Winegrad, Jr , A.I.; Oski, F.A. The role of the polyol pathway in methaemoglobin reduction in human red cells. Br. J. Haematol., 1974, 27(4), 597-605.
[51]
LeRoith, D.; Taylor, S.I.; Olefsky, J.M. Diabetes mellitus: A fundamental and clinical text. LeRoith, D.; Taylor, S.I; Olefsky, J.M., Ed.; Lippincott Williams & Wilkins, 2004.
[52]
Dagher, Z.; Park, Y.S.; Asnaghi, V.; Hoehn, T.; Gerhardinger, C.; Lorenzi, M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes, 2004, 53(9), 2404-2411.
[53]
Winges, A.; Garcia, T.B.; Preger, P.; Wiedemann, P.; Kohen, L.; Bringmann, A.; Hollborn, M. Osmotic expression of aldose reductase in retinal pigment epithelial cells: Involvement of NFAT5. Graefes Arch. Clin. Exp. Ophthalmol., 2016, 254(12), 2387-2400.
[54]
[No authors listed] A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Sorbinil Retinopathy Trial Research Group. Arch. Ophthalmol., 1990, 108, 1234-1244.
[55]
Puppala, M.; Ponder, J.; Suryanarayana, P.; Reddy, G.B.; Petrash, J.M.; LaBarbera, D.V. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS One, 2012, 7(4), e31399.
[56]
Chang, K.C.; Snow, A.; LaBarbera, D.V.; Petrash, J.M. Aldose reductase inhibition alleviates hyperglycemic effects on human retinal pigment epithelial cells. Chem. Biol. Interact., 2015, 234, 254-260.
[57]
Senthilkumari, S.; Sharmila, R.; Chidambaranathan, G.; Vanniarajan, A. Epalrestat, an aldose reductase inhibitor prevents glucose-induced toxicity in human retinal pigment epithelial cells in vitro. J. Ocul. Pharmacol. Ther., 2017, 33(1), 34-41.
[58]
Obrosova, I.G.; Minchenko, A.G.; Vasupuram, R.; White, L.; Abatan, O.I.; Kumagai, A.K.; Frank, R.N.; Stevens, M.J. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes, 2003, 52(3), 864-871.
[59]
Oates, P.; Beebe, D.; Ellery, C.; Coutcher, J. Normalization of oxidative stress marker GSSG/GSH in diabetic rat nerve requires stronger aldose reductase inhibition than normalization of sorbitol or fructose. Diabetic . Med., 2006, 23, 107.
[60]
Lassegue, B.; Clempus, R.E. Vascular NAD(P)H oxidases: Specific features, expression, and regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 285(2), 277-297.
[61]
Gonzalez, R.G.; Miglior, S.; Von Saltza, I.; Buckley, L.; Neuringer, J.; Cheng, H.M. 31P NMR studies of the diabetic lens. Magn. Reson. Med., 1988, 6(4), 435-444.
[62]
Marshall, S.; Bacote, V.; Traxinger, R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem., 1991, 266, 4706-4712.
[63]
Marshall, S.; Garvey, W.T.; Traxinger, R.R. New insights into the metabolic regulation of insulin action and insulin resistance: Role of glucose and amino acids. FASEB J., 1991, 5, 3031-3036.
[64]
Ok, T.; Yamazaki, K.; Kuromitsu, J.; Okada, M.; Tamak, I. cDNA cloning and mapping of a novel subtype of glutamine: Fructose- 6-phosphate-amidotransferase (GFAT2) in humans and mouse. Genomics, 1999, 57, 227-234.
[65]
Daniels, M.C.; Ciaraldi, T.P.; Nikoulina, S.; Henry, R.R.; McClain, D.A. Glutamine: Fructose-6-phosphate amidotransferase activity in cultured human skeletal muscle cells: Relationship to glucose disposal rate in control and non-insulin-dependent diabetes mellitus subjects and regulation by glucose and insulin. J. Clin. Invest., 1996, 97(5), 1235-1241.
[66]
Ziyadeh, F.N.; Sharma, K.; Ericksen, M.; Wolf, G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of trans- forming growth factor-beta. J. Clin. Invest., 1994, 93, 536-542.
[67]
Sharma, K.; Ziadeh, F.N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-b as a key mediator. Diabetes, 1995, 44, 1139-1146.
[68]
Kolm, V.; Sauer, U.; Olgemoller, B.; Schleicher, E.D. High glucose- induced TGF-b1 regulates mesangial production of heparan sulfate proteoglycan. Am. J. Physiol., 1996, 270, 812-821.
[69]
Rocco, M.V.; Chen, Y.; Goldfarb, S.; Ziyadeh, F.N. Elevated glucose stimulates TGF-beta gene expression and bioactivity in proximal tubule. Kidney Int., 1992, 41, 107-114.
[70]
Kolm-Litty, V.; Sauer, U.; Nerlich, A.; Lehmann, R.; Schleicher, E.D. High glucose-induced transforming growth factor b1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest., 1998, 101, 160-169.
[71]
Tsin, A.T.; Betts-Obregon, B.S.; Mortiz, R.; LeBaron, R. Novel mechanism which promotes diabetic complications in renal and ocular systems. Invest. Ophthalmol. Vis. Sci., 2017, 58(8), 4036.
[72]
Nakamura, M.; Barber, A.J.; Antonetti, D.A.; LaNoue, K.F.; Robinson, K.A.; Buse, M.G.; Gardner, T.W. Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J. Biol. Chem., 2001, 276(47), 43748-43755.
[73]
Safi, S.Z.; Qvist, R.; Kumar, S.; Batumalaie, K.; Ismail, I.S. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. BioMed Res. Int., 2014, 2014, 801269.
[74]
Gurel, Z.; Sheibani, N. O-Linked β-N-acetylglucosamine (O-GlcNAc) modification: A new pathway to decode pathogenesis of diabetic retinopathy. Clin. Sci. , 2018, 132(2), 185-198.
[75]
Stitt, A.W. AGEs and diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2010, 51(10), 4867-4874.
[76]
Thorpe, S.R.; Baynes, J.W. Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids, 2003, 25, 275-281.
[77]
Lal, S.; Szwergold, B.S.; Taylor, A.H.; Randall, W.C.; Kappler, F.; Wells-Knecht, K.; Baynes, J.W.; Brown, T.R. Metabolism of fructose-3- phosphate in the diabetic rat lens. Arch. Biochem. Biophys., 1995, 318, 191-199.
[78]
Zong, H.; Ward, M.; Stitt, A.W. AGEs, RAGE, and diabetic retinopathy. Curr. Diab. Rep., 2011, 11(4), 244-252.
[79]
Sugiyama, S.; Miyata, T.; Ueda, Y.; Tanaka, H.; Maeda, K.; Kawashima, S.; Van Ypersele de Strihou, C.; Kurokawa, K. Plasma levels of pentosidine in diabetic patients: An advanced glycation end product. J. Am. Soc. Nephrol., 1998, 9, 1681-1688.
[80]
Yamaguchi, M.; Nakamura, N.; Nakano, K.; Kitagawa, Y.; Shigeta, H.; Hasegawa, G.; Ienaga, K.; Nakamura, K.; Nakazawa, Y.; Fukui, I.; Obayashi, H.; Kondo, M. Immunochemical quantification of crossline as a fluorescent advanced glycation endproduct in erythrocyte membrane proteins from diabetic pa- tients with or without retinopathy. Diabet. Med., 1998, 15, 458-462.
[81]
Fosmark, D.S.; Torjesen, P.A.; Kilhovd, B.K.; Berg, T.J.; Sandvik, L.; Hanssen, K.F.; Agardh, C.D.; Agardh, E. Increased serum levels of the specific advanced glycation end product methylg- lyoxal-derived hydroimidazolone are associated with retinopathy in patients with type 2 diabetes mellitus. Metabol Clin. Exp., 2006, 55, 232-236.
[82]
Ono, Y.; Aoki, S.; Ohnishi, K.; Yasuda, T.; Kawano, K.; Tsukada, Y. Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res. Clin. Pract., 1998, 41, 131-137.
[83]
Stitt, A.W. Advanced glycation: An important pathological event in diabetic and age related ocular disease. Br. J. Ophthalmol., 2001, 85, 746-753.
[84]
Zhang, X.; Lai, Y.; McCance, D.R.; Uchida, K.; McDonald, D.M.; Gardiner, T.A.; Stitt, A.W.; Curtis, T.M. Evaluation of N (epsilon)-(3- formyl-3,4-dehydropiperidino)lysine as a novel biomarker for the severity of diabetic retinopathy. Diabetologia, 2008, 51, 1723-1730.
[85]
Gardiner, T.A.; Anderson, H.R.; Stitt, A.W. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J. Pathol., 2003, 201, 328-333.
[86]
Hammes, H.P.; Alt, A.; Niwa, T.; Clausen, J.T.; Bretzel, R.G.; Brownlee, M.; Schleicher, E.D. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia, 1999, 42, 728-736.
[87]
Murata, T.; Nagai, R.; Ishibashi, T.; Inomuta, H.; Ikeda, K.; Horiuchi, S. The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Diabetologia, 1997, 40, 764-769.
[88]
Schalkwijk, C.G.; Ligtvoet, N.; Twaalfhoven, H.; Jager, A.; Blaauwgeers, H.G.; Schlingemann, R.O.; Tarnow, L.; Parving, H.H.; Stehouwer, C.D.; van Hinsbergh, V.W. Amadori albumin in type 1 diabetic patients: Correlation with markers of endothelial function, association with diabetic nephropathy, and localization in retinal capillaries. Diabetes, 1999, 48, 2446-2453.
[89]
Stitt, A.W.; Li, Y.M.; Gardiner, T.A.; Bucala, R.; Archer, D.B.; Vlassara, H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am. J. Pathol., 1997, 150, 523-531.
[90]
Hammes, H.P.; Brownlee, M.; Edelstein, D.; Saleck, M.; Martin, S.; Federlin, K. Aminoguanidine inhibits the development of accelerated diabetic retinopathy in the spontaneous hypertensive rat. Diabetologia, 1994, 37, 32-35.
[91]
Mohamed, A.K.; Bierhaus, A.; Schiekofer, S.; Tritschler, H.; Ziegler, R.; Nawroth, P.P. The role of oxidative stress and NF-κB activation in late diabetic complications. BioFactors, 1999, 10, 157-167.
[92]
Kowluru, R.A. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci., 2005, 76, 1051-1060.
[93]
Cowell, R.M.; Russell, J.W. Nitrosative injury and antioxidant therapy in the management of diabetic neuropathy. J. Investig. Med., 2004, 52, 33-44.
[94]
Barile, G.R.; Pachydaki, S.I.; Tari, S.R.; Lee, S.E.; Donmoyer, C.M.; Ma, W.; Rong, L.L.; Buciarelli, L.G.; Wendt, T.; Hörig, H.; Hudson, B.I. The RAGE axis in early diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2005, 46, 2916-2924.
[95]
Zong, H.; Ward, M.; Madden, A.; Yong, P.H.; Limb, G.A.; Curtis, T.M.; Stitt, A.W. Hyperglycaemia-induced pro-inflammatory responses by retinal Muller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia, 2010, 53, 2656-2666.
[96]
Donato, R. S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol., 2001, 33, 637-668.
[97]
Ren, X.Y.; Li, Y.N.; Qi, J.S.; Niu, T. Peroxynitrite-induced protein nitra- tion contributes to liver mitochondrial damage in diabetic rats. J. Diabetes Complications, 2008, 22, 357-364.
[98]
Vasan, S.; Foiles, P.; Founds, H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch. Biochem. Biophys., 2003, 419, 89-96.
[99]
Hammes, H.P.; Martin, S.; Federlin, K.; Geisen, K.; Brownlee, M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc. Natl. Acad. Sci. USA, 1991, 88, 11555-11558.
[100]
Kern, T.S.; Engerman, R.L. Pharmacological inhibition of diabetic retinopathy: Aminoguanidine and aspirin. Diabetes, 2001, 50, 1636-1642.
[101]
Agardh, E.; Hultberg, B.; Agardh, C. Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats. Curr. Eye Res., 2000, 21, 543-549.
[102]
Bolton, W.K.; Cattran, D.C.; Williams, M.E.; Adler, S.G.; Appel, G.B.; Cartwright, K.; Foiles, P.G.; Freedman, B.I.; Raskin, P.; Ratner, R.E.; Spinowitz, B.S.; Whittier, F.C.; Wuerth, J.P. ACTION I Investigator Group. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol., 2004, 24, 32-40.
[103]
Kuhla, B.; Luth, H.J.; Haferburg, D.; Boeck, K.; Arendt, T.; Munch, G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2005, 1043, 211-216.
[104]
Miller, A.G.; Smith, D.G.; Bhat, M.; Nagaraj, R.H. Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions. J. Biol. Chem., 2006, 281, 11864-11871.
[105]
Stitt, A.; Gardiner, T.A.; Alderson, N.L.; Canning, P.; Frizzell, N.; Duffy, N.; Boyle, C.; Januszewski, A.S.; Chachich, M.; Baynes, J.W.; Thorpe, S.R. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes, 2002, 51, 2826-2832.
[106]
Rahbar, S. Novel inhibitors of glycation and AGE formation. Cell Biochem. Biophys., 2007, 48, 147-157.
[107]
Bhatwadekar, A.; Glenn, J.V.; Figarola, J.L.; Scott, S.; Gardiner, T.A.; Rahbar, S.; Stitt, A.W. A new advanced glycation inhibitor, LR-90, prevents experimental diabetic reti- nopathy in rats. Br. J. Ophthalmol., 2008, 92, 545-547.
[108]
Sun, L.; Huang, T.; Xu, W.; Sun, J.; Lv, Y.; Wang, Y. Advanced glycation end products promote VEGF expression and thus choroidal neovascularization via Cyr61-PI3K/AKT signaling pathway. Sci. Rep., 2017, 7(1), 14925.
[109]
Thompson, K.; Chen, J.; Luo, Q.; Xiao, Y.; Cummins, T.R.; Bhatwadekar, A.D. Advanced glycation end (AGE) product modification of laminin downregulates Kir4. 1 in retinal Müller cells. PLoS One, 2018, 13(2), e0193280.
[110]
Kan, S.; Wu, J.; Sun, C.; Hao, J.; Wu, Z. Correlation between RAGE gene promoter methylation and diabetic retinal inflammation. Exp. Ther. Med., 2018, 15(1), 242-246.
[111]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-3.
[112]
Kowluru, R.A.; Kowluru, A.; Veluthakal, R.; Mohammad, G.; Syed, I.; Santos, J.M.; Mishra, M. TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia, 2014, 57(5), 1047-1056.
[113]
Kowluru, A.; Kowluru, R.A. Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochem. Pharmacol., 2014, 88(3), 275-283.
[114]
Narayanan, S.P.; Rojas, M.; Suwanpradid, J.; Toque, H.A.; Caldwell, R.W. Caldwell, R.B. Arginase in retinopathy. Prog. Retin. Eye Res., 2013, 36, 260-280.
[115]
Haskins, K.; Bradley, B.; Powers, K.; Fadok, V.; Flores, S.; Ling, X.; Pugazhenthi, S.; Reusch, J.; Kench, J. Oxidative stress in type 1 diabetes. Ann. N. Y. Acad. Sci., 2003, 1005, 43-54.
[116]
Baynes, J.W.; Thorpe, S.R. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes, 1999, 48, 1-9.
[117]
Kowluru, R.A.; Mishra, M. Oxidative stress, mitochondrial damage and diabetic retinopathy. BBA- Mol. Basis. Dis., 2015, 1852(11), 2474-2483.
[118]
Kowluru, R.A.; Tang, J.; Kern, T.S. Abnormalities of retinal metabolism in diabetes and experimental galactosemia: VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes, 2001, 50(8), 1938-1942.
[119]
Candas, D.; Li, J.J. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid. Redox Signal., 2014, 20(10), 1599-1617.
[120]
Kowluru, R.A.; Chan, P.S. Oxidative stress and diabetic retinopathy. Exp. Diabetes Res., 2007, 2007, 43603.
[121]
Haskins, K.; Bradley, B.; Powers, K.; Fadok, V.; Flores, S.; Ling, X.; Pugazhenthi, S.; Reusch, J.; Kench, J. Oxidative stress in type 1 diabetes. Ann. N. Y. Acad. Sci., 2003, 1005, 43-54.
[122]
Kowluru, R.A.; Abbas, S.N. Diabetes-induced mitochondrial dysfunction in the retina. Invest. Ophthalmol. Vis. Sci., 2003, 44, 5327-5323.
[123]
Du, Y.; Miller, C.M.; Kern, T.S. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic. Biol. Med., 2003, 5, 1491-1499.
[124]
Cui, Y.; Xu, X.; Bi, H.; Zhu, Q.; Wu, J.; Xia, X.; Ren, Q.; Ho, P.C. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp. Eye Res., 2006, 83, 807-816.
[125]
Ellis, E.A.; Guberski, D.L.; Somogyi-Mann, M.; Grant, M.B. Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/WOR diabetic rat. Free Radic. Biol. Med., 2000, 28, 91-101.
[126]
Yokoi, M.; Yamagishi, S.I.; Takeuchi, M.; Ohgami, K.; Okamoto, T.; Saito, W.; Muramatsu, M.; Imaizumi, T.; Ohno, S. Elevations of AGE and vascular endothelial growth factor with decreased total antioxidant status in the vitreous fluid of diabetic patients with retinopathy. Br. J. Ophthalmol., 2005, 89, 673-675.
[127]
Mancino, R.; Di Pierro, D.; Varesi, C.; Cerulli, A.; Feraco, A.; Cedrone, C.; Pinazo-Duran, M.D.; Coletta, M.; Nucci, C. Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol. Vis., 2011, 17, 1298.
[128]
Izuta, H.; Matsunaga, N.; Shimazawa, M.; Sugiyama, T.; Ikeda, T.; Hara, H. Proliferative diabetic retinopathy and relations among antioxidant activity, oxidative stress, and VEGF in the vitreous body. Mol. Vis., 2010, 16, 130.
[129]
Handelman, G.J.; Dratz, E.A.; Reay, C.C.; Van Kuijk, J.G. Carotenoids in the human macula and whole retina. Invest. Ophthalmol. Vis. Sci., 1988, 29, 850-855.
[130]
Bone, R.A.; Landrum, J.T.; Friedes, L.M.; Gomez, C.M.; Kilburn, M.D.; Menendez, E.; Vidal, I.; Wang, W. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp. Eye Res., 1997, 64, 211-218.
[131]
Bernstein, P.S.; Khachik, F.; Carvalho, L.S.; Muir, G.J.; Zhao, D.Y.; Katz, N.B. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Exp. Eye Res., 2001, 72(3), 215-223.
[132]
Coyne, T.; Ibiebele, T.I.; Baade, P.D.; Dobson, A.; McClintock, C.; Dunn, S.; Leonard, D.; Shaw, J. Diabetes mellitus and serum carotenoids: Findings of a population-based study in Queensland. Australia. Am. J. Clin. Nutr., 2005, 82, 685-693.
[133]
Hu, B.J.; Hu, Y.N.; Lin, S.; Ma, W.J.; Li, X.R. Application of lutein and zeaxanthin in nonproliferative diabetic retinopathy. Int. J. Ophthalmol., 2011, 4, 303.
[134]
Sahajpal, N.S.; Vig, V.; Singh, P.; Singh, R.; Jain, S. The deranged vitreous biochemistry in diabetic retinopathy: Prabable diagnostic, prognostic and therapeutic targets. Invest. Ophthalmol. Vis. Sci., 2017, 58(8), 5211.
[135]
Cutler, R.G. Oxidative stress profiling: Part I. Its potential importance in the optimization of human health. Ann. N. Y. Acad. Sci., 2005, 1055(1), 93-135.
[136]
Finkel, T. Intracellular redox regulation by the family of small GTPases. Antioxid. Redox Signal., 2006, 8(9-10), 1857-1863.
[137]
Kowluru, R.A.; Kowluru, A.; Chakrabarti, S.; Khan, Z. Potential contributory role of H-Ras, a small G-protein, in the development of retinopathy in diabetic rats. Diabetes, 2004, 53(3), 775-783.
[138]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414, 813-820.
[139]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[140]
Kanwar, M.; Chan, P.S.; Kern, T.S.; Kowluru, R.A. Oxidative damage in the retinal mitochondria of diabetic mice: Possible protection by superoxide dismutase. Invest. Ophthalmol. Vis. Sci., 2007, 48(8), 3805-3811.
[141]
Kowluru, R.A.; Atasi, L.; Ho, Y.S. Role of mitochon- drial superoxide dismutase in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2006, 47(4), 1594-1599.
[142]
Kowluru, R.A.; Abbas, S.N. Diabetes-induced mitochondrial dysfunction in the retina. Invest. Ophthalmol. Vis. Sci., 2003, 44(12), 5327-5334.
[143]
Kowluru, R.A.; Abbas, S.N.; Odenbach, S. Reversal of hyperglycemia and diabetic nephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats. J. Diabetes Complications, 2004, 18(5), 282-288.
[144]
Kowluru, R.A.; Koppolu, P.; Chakrabarti, S.; Chen, S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic. Res., 2003, 37(11), 1169-1180.
[145]
Kowluru, R.A.; Koppolu, P. Diabetes-induced activation of caspase-3 in retina: Effect of antioxidant therapy. Free Radic. Res., 2002, 36(9), 993-999.
[146]
Du, X.; Stockklauser-Farber, K.; Rosen, P. Generation of reactive oxygen intermediates, activation of NF-κB, and induction of apoptosis in human endothelial cells by glucose: Role of nitric oxide synthase? Free Radic. Res., 1999, 27, 752-763.
[147]
Romeo, G.; Liu, W.H.; Asnaghi, V.; Kern, T.S.M.; Lorenzi, M. Activation of nuclear factor-κB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes, 2002, 51(7), 2241-2248.
[148]
Beckman, J.S.; Koppenol, W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. Am. J. Physiol. Cell Physiol., 1996, 271, 1424-1437.
[149]
Behar-Cohen, F.F.; Heydolph, S.; Faure, V.; Droy-Lefaix, M.T.; Courtois, Y.; Goureau, O. Peroxynitrite cytotoxicity on bovine retinal pigmented epithelial cells in culture. Biochem. Biophys. Res. Commun., 1996, 226, 842-849.
[150]
Radi, R.; Cassina, A.; Hodara, R.; Quijano, C.; Castro, L. Peroxynitrite reactions and formation in mitochondria. Free Radic. Res., 2002, 33, 1451-1464.
[151]
Kowluru, R.A.; Tang, J.; Kern, T.S. Abnormalities of retinal metabolism in diabetes and experimental galactosemia: VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes, 2001, 50(8), 1938-1942.
[152]
El-Asrar, A.M.; Desmet, S.; Meersschaert, A.; Dralands, L.; Missotten, L.; Geboes, K. Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Am. J. Ophthalmol., 2001, 132(4), 551-556.
[153]
Kowluru, R.A.; Engerman, R.L.; Case, G.L.; Kern, T.S. Retinal glutamate in diabetes and effect of antioxidants. Neurochem. Int., 2001, 38(5), 385-390.
[154]
Zheng, L.; Du, Y.; Miller, C.; Gubitosi-Klug, R.A.; Kern, T.S.; Ball, S.; Berkowitz, B.A. Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Diabetologia, 2007, 50(9), 1987-1996.
[155]
Kern, T.S.; Miller, C.M.; Du, Y.; Zheng, L.; Mohr, S.; Ball, S.L.; Kim, M.; Jamison, J.A.; Bingaman, D.P. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes, 2007, 56(2), 373-379.
[156]
Le, L.M.; Poulaki, V.; Koizumi, K.; Fauser, S.; Kirchhof, B.; Joussen, A.M. Reduced histopathological alterations in long-term diabetic TNF-R deficient mice. Invest. Ophthalmol. Vis. Sci., 2003, 44(13), 3894.
[157]
Bry, M.; Kivelä, R.; Leppänen, V.M.; Alitalo, K. Vascular endothelial growth factor-B in physiology and disease. Physiol. Rev., 2014, 94(3), 779-794.
[158]
Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E.; Nguyen, H.V. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med., 1994, 331(22), 1480-1487.
[159]
Simó, R.; Sundstrom, J.M.; Antonetti, D.A. Ocular anti-VEGF therapy for diabetic retinopathy: The role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care, 2014, 37(4), 893-899.
[160]
Adamis, A.P.; Miller, J.W.; Bernal, M.T.; D’Amico, D.J.; Folkman, J.; Yeo, T.K.; Yeo, K.T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol., 1994, 118, 445-450.
[161]
Malecaze, F.; Clamens, S.; Simorre-Pinatel, V.; Mathis, A.; Chollet, P.; Favard, C.; Bayard, F.; Plouet, J. Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch. Ophthalmol., 1994, 112, 1476-1482.
[162]
Perrin, R.M.; Konopatskaya, O.; Qiu, Y.; Harper, S.; Bates, D.O.; Churchill, A.J. Diabetic retinopathy is associated with a switch in splicing from anti-to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia, 2005, 48(11), 2422-2427.
[163]
Grigsby, J.G.; Allen, D.M.; Ferrigno, A.S.; Vellanki, S.; Pouw, C.E.; Hejny, W.A.; Tsin, A.T.C. Autocrine and paracrine secretion of vascular endothelial growth factor in the pre-hypoxic diabetic retina. Curr. Diabetes Rev., 2017, 13(2), 161-174.
[164]
Osaadon, P.; Fagan, X.J.; Lifshitz, T.; Levy, J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye , 2014, 28(5), 510.
[165]
Semeraro, F.; Cancarini, A.; Rezzola, S.; Romano, M.R.; Costagliola, C. Diabetic retinopathy: Vascular and inflammatory disease. J. Diabetes Res., 2015, 2015, 582060.
[166]
Granger, D.N.; Senchenkova, E. Inflammation and the microcirculation. Chapter 6angiogenesis; San Rafael, CA: Morgan & Claypool Life Sciences, 2010.
[167]
Lingen, M.W. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch. Pathol. Lab. Med., 2001, 125, 67-71.
[168]
Naldini, A.; Carraro, F. Role of inflammatory mediators in angiogenesis. Curr. Drug Targets Inflamm. Allergy, 2005, 4, 3-8.
[169]
Tsai, T.; Kuehn, S.; Tsiampalis, N.; Vu, M.K.; Kakkassery, V.; Stute, G.; Dick, H.B.; Joachim, S.C. Anti-inflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS One, 2018, 13(3), e0194603.
[170]
Yu, Y.; Zhang, J.; Zhu, R.; Zhao, R.; Chen, J.; Jin, J.; Tian, Y.; Su, S.B. The profile of angiogenic factors in vitreous humor of the patients with proliferative diabetic retinopathy. Curr. Mol. Med., 2017, 17(4), 280-286.
[171]
El-Asrar, A.M.; Ahmed, M.; Ahmad, A.; Alam, K.; Bittoun, E.; Siddiquei, M.M.; Mohammad, G.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Association of 150‐kDa oxygen‐regulated protein with vascular endothelial growth factor in proliferative diabetic retinopathy. Acta Ophthalmol., 2017. [Epub ahead of print].
[172]
Yoshida, S.; Kobayashi, Y.; Nakao, S.; Sassa, Y.; Hisatomi, T.; Ikeda, Y.; Oshima, Y.; Kono, T.; Ishibashi, T.; Sonoda, K.H. Differential association of elevated inflammatory cytokines with postoperative fibrous proliferation and neovascularization after unsuccessful vitrectomy in eyes with proliferative diabetic retinopathy. Clin. Ophthalmol., 2017, 11, 1697.
[173]
Kimura, K.; Orita, T.; Kobayashi, Y.; Matsuyama, S.; Fujimoto, K.; Yamauchi, K. Concentration of acute phase factors in vitreous fluid in diabetic macular edema. Jpn. J. Ophthalmol., 2017, 61(6), 479-483.
[174]
El-Asrar, A.M.; Struyf, S.; Mohammad, G.; Gouwy, M.; Rytinx, P.; Siddiquei, M.M.; Hernández, C.; Alam, K.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Osteoprotegerin is a new regulator of inflammation and angiogenesis in proliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2017, 58(7), 3189-3201.
[175]
Gomaa, A.R.; Elsayed, E.T.; Moftah, R.F. MicroRNA-200b expression in the vitreous humor of patients with proliferative diabetic retinopathy. Ophthalmic Res., 2017, 58(3), 168-175.
[176]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107, 1058-1070.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy