Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Advances in BPA-induced Oxidative Stress and Related Effects and Mechanisms in Liver, 1991-2017

Author(s): Xun Zhang and Rutao Liu*

Volume 20, Issue 6, 2020

Page: [432 - 443] Pages: 12

DOI: 10.2174/1389557518666180912105345

Price: $65

Abstract

Bisphenol A (BPA) is a widely spreading environmental endocrine disruptor . Its characteristics, including small doses and frequent contact, make it easy to enter human body through drinking water, food, air and other pathways, leading to tumors, infertility, and liver damage. The present review summarizes the underlying mechanism of oxidative stress and its related effects induced by BPA in the liver. The progress of the mechanism for oxidative stress induced by BPA is summarized, including mitochondrial dysfunction, lipid peroxidation and inflammation reaction, liver dyslipidemia, apoptosis, and cell death mechanism. In the future, it is necessary to elucidate the molecular mechanisms and timing of oxidative stress to clarify the effects on different exposures to different genders and growth stages. Besides, studying the toxic effects on BPA surrogates, BPA metabolites and BPA combined with other pollutants in the environment is beneficial to clarify the environmental and human health effects of BPA and provide technical reference for the development of practical control measures.

Keywords: BPAm oxidative stress, liver injury, hepatic lipid, infertility, inflammation reaction, liver dyslipidemia.

Graphical Abstract
[1]
Aydoğan, M.; Korkmaz, A.; Barlas, N.; Kolankaya, D. Pro-oxidant effect of vitamin C coadministration with bisphenol A, nonylphenol, and octylphenol on the reproductive tract of male rats. Drug Chem. Toxicol., 2010, 33(2), 193.
[2]
Welshons, W.V.; Nagel, S.C.; Vom Saal, F.S. Large effects from small exposures III Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 2006, 147(6 Suppl. 1), 56-69.
[3]
Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. population to bisphenol A and 4-tertiary-Octylphenol: 2003-2004. Environ. Health Perspect., 2008, 116, 39.
[4]
Kang, J.; Aasi, D.; Katayama, Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit. Rev. Toxicol., 2007, 37(7), 607.
[5]
Loganathan, S.N.; Kannan, K. Occurrence of bisphenol A in indoor dust from two locations in the eastern united states and implications for human exposures. Arch. Environ. Contam. Toxicol., 2011, 61, 68.
[6]
Manfo, F.P.T.; Jubendradass, R.; Nantiam, E.A.; Moundipa, P.F.; Mathur, P.P. Adverse Effects of Bisphenol A on Male Reproductive Function. Rev. Environ. Contam. Toxicol., 2014, 228(228), 57.
[7]
Markey, C.M.; Luque, E.H.; Munoz, D.T.M.; Sonnenschein, C.; Soto, A.M. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol. Reprod., 2001, 65(4), 1215-1223.
[8]
Rubin, B.S.; Soto, A.M.; Bisphenol, A. Perinatal exposure and body weight. Mol. Cell. Endocrinol., 2009, 304(1-2), 55.
[9]
Bonefeld, J.; Rgensen, E.C.; Long, M.; Hofmeister, M.V.; Vinggaard, A.V. Endocrine-Disrupting potential of bisphenol a, bisphenol A dimethacrylate, 4-n-Nonylphenol, and 4-n-octylphenol in Vitro: New data and a brief review. Environ. Health Perspect., 2007, 115(Suppl. 1), 69-76.
[10]
Crain, D.A.; Eriksen, M.; Iguchi, T.; Jobling, S.; Laufer, H.; LeBlanc, G.A.; Guillette, Jr L.J. An ecological assessment of bisphenol-A: Evidence from comparative biology. Reprod. Toxicol., 2007, 24(2), 225-239.
[11]
Wetherill, Y.B.; Akingbemi, B.T.; Kanno, J.; McLachlan, J.A.; Nadal, A.; Sonnenschein, C.; Watson, C.S.; Zoeller, R.T.; Belcher, S.M. In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol., 2007, 24(2), 178-198.
[12]
Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol., 2013, 42(12), 132.
[13]
Feng, W.; Jing, H.; Chen, M.; Xia, Y.; Zhang, Q.; Zhao, R.; Zhou, W.; Zhang, Z.; Wang, B. High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occup. Environ. Med., 2012, 69(9), 679-684.
[14]
Han, L.; Wang, B. The application of bisphenol a in food packaging materials safety research progress. Packag. Food Machin, 2016, 35(9), 62-65.
[15]
Zhang, X.Z.H.S.G.; Wu, M.S. Environmental behavior of Biphenol A - a review. J. Anyang Inst. Technol, 2006, 2, 10-17.
[16]
Yang, Y.J.; Yin, J.; Shao, B. Research progress of bisphenol S: A substitute for bisphenol A. Cap. J. Public Health, 2016, 10(5), 222-225.
[17]
Boockfor, F.R.; Blake, C.A. Chronic administration of 4-tert-octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities. Biol. Reprod., 1997, 57(2), 267-277.
[18]
Haavisto, T.E.; Adamsson, N.A.; Myllym, S.A.; Toppari, J.; Paranko, J. Effects of 4-tert-octylphenol, 4-tert-butylphenol, and diethylstilbestrol on prenatal testosterone surge in the rat. Reprod. Toxicol., 2003, 17(5), 593.
[19]
Chitra, K.; Latchoumycandane, C.; Mathur, P. Effect of nonylphenol on the antioxidant system in epididymal sperm of rats. Arch. Toxicol., 2002, 76(9), 545-551.
[20]
Aydoğan, M.; Barlas, N. Effects of maternal 4-tert-octylphenol exposure on the reproductive tract of male rats at adulthood. Reprod. Toxicol., 2006, 22(3), 455.
[21]
Kabuto, H.; Hasuike, S.; Minagawa, N.; Shishibori, T. Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ. Res., 2003, 93, 31-35.
[22]
Kabuto, H.; Amakawa, M.; Shishibori, T. Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life Sci., 2004, 74(24), 2931-2940.
[23]
Korkmaz, A.; Ahbab, M.A.; Kolankaya, D.; Barlas, N. Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food Chem. Toxicol.: An Intl. J. Pub. Brit. Indust. Biol. Res. Associat., 2010, 48(10), 2865-2871.
[24]
Franco, R.; Sanchez-Olea, R.R. Em; Panayiotidis, M. Environmental toxicity, oxidative stress and apoptosis: Menage a trois. Mutat. Res., 2009, 674(2), 3-22.
[25]
Marmugi, A.; Ducheix, S.; Lasserre, F.; Polizzi, A.; Paris, A.; Priymenko, N.; Bertrand-Michel, J.; Pineau, T.; Guillou, H.; Martin, P.G.P.; Mselli-Lakhal, L. Low doses of bisphenol a induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology, 2012, 55(2), 395-407.
[26]
Hugo, E.R.; Brandebourg, T.D.; Woo, J.G.; Loftus, J.; Alexander, J.W.; Ben-Jonathan, N. Bisphenol a at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect., 2008, 116(12), 1642.
[27]
Nadal, A.; Alonso, M.P.S. The pancreatic beta-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Mol. Cell. Endocrinol., 2009, 304(1-2), 63.
[28]
Cabaton, N.J.; Canlet, C.; Wadia, P.R.; Tremblay-Franco, M.; Gautier, R.; Molina, J.; Sonnenschein, C.; Cravedi, J-P.; Rubin, B.S.; Soto, A.M.; Zalko, D. Effects of low doses of bisphenol a on the metabolome of perinatally exposed CD-1 mice. Environ. Health Perspect., 2013, 121(5), 586-593.
[29]
Marmugi, A.; Lasserre, F.; Beuzelin, D.; Ducheix, S.; Huc, L.; Polizzi, A.; Chetivaux, M.; Pineau, T.; Martin, P.; Guillou, H.; Mselli-Lakhal, L. Adverse effects of long-term exposure to bisphenol A during adulthood leading to hyperglycaemia and hypercholesterolemia in mice. Toxicology, 2014, 325, 133-143.
[30]
Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell, 2005, 120(4), 483.
[31]
Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175.
[32]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[33]
Suzuki, Y.J.; Forman, H.J.; Sevanian, A. Oxidants as stimulators of signal transduction. Free Radic. Biol. Med., 1997, 22(1-2), 269-285.
[34]
Halliwell, B.; Gutteridge, J.M.C. Oxidative stress, in Free Radicals in Biology and Medicine 3rd ed [J].,. , 1999.
[35]
Liu, H.; Zheng, F.; Cao, Q.; Ren, B.; Zhu, L.; Striker, G.; Vlassarae, H. Amelioration of oxidant stress by the defensin lysozyme. Am. J. Physiol. Endocrinol. Metab., 2006, 290(5)E824
[36]
Kajihara, T.; Uchino, S.; Suzuki, M.; Itakura, A. Human chorionic gonadotropin confers resistance to oxidative stress-induced apoptosis in decidualizing human endometrial stromal cells. Fertil. Steril., 2011, 95(4), 1302-1307.
[37]
Fuchs, J.; Packer, L. Environmental stressors in health and disease; Marcel Dekker, 2001.
[38]
Alvarez-Gonzalez, R. Free radicals, oxidative stress, and DNA metabolism in human cancer. Cancer Invest., 1999, 17(5), 376-377.
[39]
Folkes, L.K.; Christlieb, M.; Madej, E.; Stratford, M.R.L.; Wardman, P. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals. Chem. Res. Toxicol., 2007, 20(12), 1885.
[40]
Upadhyay, D.; Panduri, V.; Ghio, A.; Kamp, D.W. Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: Role of free radicals and the mitochondria. Am. J. Respir. Cell Mol. Biol., 2003, 29(2), 180-187.
[41]
Bindhumol, V.; Chitra, K.C.; Mathur, P.P. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology, 2003, 188(2-3), 117.
[42]
Chitra, K.C.; Latchoumycandane, C.; Mathur, P.P. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology, 2003, 185(1-2), 119.
[43]
Hassan, Z.K.; Elobeid, M.A.; Virk, P.; Omer, S.A.; ElAmin, M.; Daghestani, M.H.; AlOlayan, E.M. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid. Med. Cell. Longev., 2012, 2012(6), 194829
[44]
Min, K.M.; Min, J.K.; Jung, I.K.; Koo, Y.D.; Ann, H.Y.; Lee, K.J.; Kim, S.H.; Yoon, Y.C.; Cho, B.; Park, K.S.; Jang, H.C.; Park, Y.J. Bisphenol A impairs mitochondrial function in the liver at doses below the no observed adverse effect level. J. Korean Med. Sci., 2012, 27(6), 644-652.
[45]
Lee, S.; Suk, K.; Kim, I.K.; Jang, I.; Park, J-W.; Johnson, V.J.; Kwon, T.K.; Choi, B-J.; Kim, S-H. Signaling pathways of bisphenol A-induced apoptosis in hippocampal neuronal cells: role of calcium-induced reactive oxygen species, mitogen-activated protein kinases, and nuclear factor-kappaB. J. Neurosci. Res., 2008, 86(13), 2932-2942.
[46]
Kadoma, Y.; Fujisawa, S. Kinetic evaluation of reactivity of bisphenol A derivatives as radical scavengers for methacrylate polymerization. Biomaterials, 2000, 21(21), 2125-2130.
[47]
Guimar Es, L.; Medina, M.H.; Guilhermino, L. Health status of Pomatoschistus microps populations in relation to pollution and natural stressors: Implications for ecological risk assessment. Biomarkers, 2012, 17(1), 62-77.
[48]
Yang, S.; Xu, F.; Zheng, B.; Wu, F.; Wang, S. Multibiomarker responses upon exposure to tetrabromobisphenol A in the freshwater fish Carassius auratus. Aquat. Toxicol., 2013, 142-143(4), 248-256.
[49]
Wang, X.M.; Hong, Y.; Chen, F. Experimental study on the oxidative damage by bisphenol A at middle and low doses in mice. Pract. Prev. Med., 2013, 20(3), 280-282.
[50]
Abramov, J.P.; Wells, P.G. Embryonic catalase protects against endogenous and phenytoin-enhanced DNA oxidation and embryopathies in acatalasemic and human catalase-expressing mice. Faseb J., 2011, 25(7), 2188-2200.
[51]
Meister, A. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol., 1992, 44(10), 1905.
[52]
R J H, J C J, Q Z. . Toxic effect mechanism of bisphenol A. J. Shenyang Univ. Technol, 2015, 37(6), 710-715.
[53]
Hussein, R.M.; Eid, J.I. Pathological mechanisms of liver injury caused by oral administration of bisphenol A. Life Sci. J., 2013, 10(1), 663.
[54]
Sangai, N.P.; Verma, R.J.; Trivedi, M.H. Testing the efficacy of quercetin in mitigating bisphenol A toxicity in liver and kidney of mice. Toxicol. Indust. Health, 2014, 30(7), 581-597.
[55]
Barlas, N.; Aydoğan, M. Histopathologic effects of maternal 4-tert-octylphenol exposure on liver, kidney and spleen of rats at adulthood. Arch. Toxicol., 2009, 83(4), 341-349.
[56]
Sayed-Ahmed, M.M.; Aleisa, A.M.; Al-Rejaie, S.S.; Al-Yahya, A.A.; Al-Shabanah, O.A.; Hafez, M.M.; Nagi, M.N. Thymoquinone attenuates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling. Oxid. Med. Cell. Longev., 2010, 3(4), 254.
[57]
Lee, A.S.; Lee, S.H.; Lee, S.; Yang, B.K. Effects of Streptozotocin, Bisphenol A and Diethylstilbestrol on production of reactive oxygen species and lipid peroxidation in the boar sperm. Biomed. Sci. Lett, 2017, 23(2), 128-132.
[58]
Zhang, H.; Liu, Y.; Liu, R.; Liu, C.; Chen, Y. Molecular mechanism of lead-induced superoxide dismutase inactivation in zebrafish livers. J. Phys. Chem. B, 2014, 118(51), 14820.
[59]
Avci, B.; Bahadir, A.; Tuncel, O.K.; Bilgici, B. Influence of α-tocopherol and α-lipoic acid on bisphenol-A-induced oxidative damage in liver and ovarian tissue of rats. Toxicol. Ind. Health, 2014, 32(8), 1381-1391.
[60]
Fang, C.; Ning, B.; Waqar, A.B.; Niimi, M.; Li, S.; Satoh, K.; Shiomi, M.; Ye, T.; Dong, S.; Fan, J. Bisphenol A exposure induces metabolic disorders and enhances atherosclerosis in hyperlipidemic rabbits. J. Appl. Toxicol. Jat, 2015, 35(9), 1058.
[61]
Kim, J.B.; Han, A.R.; Park, E.Y.; Kim, J-Y.; Cho, W.; Lee, J.; Seo, E-K.; Lee, K-T. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull., 2007, 30(12), 2345.
[62]
Li, Y.C.; Kuan, Y.H.; Huang, F.M.; Chang, Y.C. The role of DNA damage and caspase activation in cytotoxicity and genotoxicity of macrophages induced by bisphenol-A-glycidyldimethacrylate. Int. Endodon. J., 2012, 45(6), 499-507.
[63]
Bala, A.; Mondal, C.; Haldar, P.K.; Khandelwal, B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: Clinical efficacy of dietary antioxidants. Inflammopharmacology, 2017, 25(6), 1-13.
[64]
Dong, W.; Simeonova, P.P.; Gallucci, R.; Matheson, J.; Flood, L.; Wang, S.; Hubbs, A.; Luster, M.I. Toxic metals stimulate inflammatory cytokines in hepatocytes through oxidative stress mechanisms. Toxicol. Appl. Pharmacol., 1998, 151(2), 359-366.
[65]
Babbar, N.; Jr, C.R. Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: A potential mechanism for inflammation-induced carcinogenesis. Cancer Res., 2006, 66(23), 11125-11130.
[66]
Streetz, K.L.; Luedde, T.; Manns, M.P.; Trautwein, C. Interleukin 6 and liver regeneration. Gut, 2000, 47(2), 309.
[67]
Dan-Ting, L.I.; Liu, L.L.; Gao, R.F. Endoplasmic reticulum stress is involved in bisphenol A-induced hepatic lipid deposition of mice. Basic Clin. Med., 2016, 36(7), 886-890.
[68]
Chan, D.C. Mitochondria: Dynamic organelles in disease, Aging, and Development. Cell, 2006, 125(7), 1241-1252.
[69]
Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol., 2007, 17(9), 422-427.
[70]
Suski, J.M.; Lebiedzinska, M.; Bonora, M.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Relation between mitochon-drial membrane potential and ROS formation. Methods Mol. Biol., 2012, 810, 183.
[71]
Foster, K.A.; Galeffi, F.; Gerich, F.J.; Turner, D.A.; Müller, M. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog. Neurobiol., 2006, 79(3), 136-171.
[72]
Simon, H.U.; Hajyehia, A.; Levischaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5), 415-418.
[73]
Turrens, J.F. Superoxide production by the mitochondrial respiratory chain. Biosci. Reports., 1997, 17(1), 3-8.
[74]
Nakagawa, Y.; Tayama, S. Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch. Toxicol., 2000, 74(2), 99-105.
[75]
Williams, G.T. Programmed cell death: Apoptosis and oncogenesis. Cell, 1991, 65(7), 1097-1098.
[76]
Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science, 1998, 281(5381), 1309.
[77]
Ott, M.; Gogvadze, V.; Orrenius, S. Mitochondria, oxidative stress and cell death. Apoptosis, 2007, 12(5), 913-922.
[78]
Arai, K.; Lee, S.R.; Van, L.K.; Kurose, H. Involvement of ERK MAP kinase in endoplasmic reticulum stress in SH-SY5Y human neuroblastoma cells. J. Neurochem., 2004, 89(1), 232-239.
[79]
Urano, F.; Wang, X.; Bertolotti, A.; Zhang, Y.; Chung, P.; Harding, H.P.; Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000, 287(5453), 664.
[80]
Qiu, Y.L.; Li, Q.Z.; Zheng, Y.Q. Interaction between endoplasmic reticulum stress and oxidative stress. Pract. Pharm. Clin. Remed, 2016, 19(8), 1037-1041.
[81]
Asahi, J.; Kamo, H.; Baba, R.; Doi, Y.; Yamashita, A.; Murakami, D.; Hanada, A.; Hirano, T. Bisphenol A induces endoplasmic reticulum stress-associated apoptosis in mouse non-parenchymal hepatocytes. Life Sci., 2010, 87(13-14), 431.
[82]
Hirano, T.; Kawai, K.; Ootsuyama, Y.; Orimo, H.; Kasai, H. Detection of a mouse OGG1 fragment during caspase-dependent apoptosis: Oxidative DNA damage and apoptosis. Cancer Sci., 2004, 95(8), 634.
[83]
Simon, H.U.; Hajyehia, A.; Levischaffer, F. Role of Reactive Oxygen Species (ROS) in apoptosis induction. Apoptosis Intl. J. Program. Cell Death, 2000, 5(5), 415-418.
[84]
Izzotti, A.; Kanitz, S.; D’agostini, F.; Camoirano, A.; Flora, S. Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat. Res., 2009, 679(1-2), 28.
[85]
Liao, C.Y.; Fu, J.J.; Shi, J.B.; Zhou, Q-F.; Yuan, C-G.; Jiang, G-B. Methylmercury accumulation, histopathology effects, and cholinesterase activity alterations in medaka (Oryzias latipes) following sublethal exposure to methylmercury chloride. Environ. Toxicol. Pharmacol., 2006, 22(2), 225.
[86]
Chou, W.C.; Chen, J.L.; Lin, C.F.; Chen, Y-C.; Shih, F-C.; Chuang, C-Y. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: A birth cohort study in Taiwan. Environ. Health, 2011, 10(1), 94.
[87]
Verma, R.J.; Sangai, N.P. The ameliorative effect of black tea extract and quercetin on bisphenol A-induced cytotoxicity. Acta Poloniae. Pharmaceutica.,, 2009, 66(1), 41-44.
[88]
Cao, N.; Wei, H.; Wu, L.G.; Wu, T-T. Effects of bisphenol A on zebrafish (Danio rerio) liver and gonad. Chin. J. Ecol., 2010, 29(11), 2192-2198.
[89]
Boshra, V.; Moustafa, A.M. Effect of preischemic treatment with fenofibrate, a peroxisome proliferator-activated receptor-alpha ligand, on hepatic ischemia-reperfusion injury in rats4 (Retracted article. See vol. 44, pg. 495, 2013). 2011.
[90]
Roy, S.; Kalita, C.J.; Mazumdar, M. Histopathlogical effects of Bisphenol A on liver of Heteropneustes Fossilis; Bloch, 2011.
[91]
Mourad, I.M.; Khadrawy, Y.A. The sensetivity of liver, kidney andtestis of rats to oxidative stress induced by different doses of bisphenol A. Life, 2012, 2(2), 19-28.
[92]
Cao, N.; Wei, H.; Wu, L.G. Effects of bisphenol A on zebrafish(Danio rerio) liver and gonad. Chin. J. Ecol., 2010, 29(11), 2192-2198.
[93]
Liang, Q.; Gao, X.; Chen, Y.; Hong, K.; Wang, H-S. Cellular mechanism of the nonmonotonic dose response of bisphenol A in rat cardiac myocytes. Environ. Health Perspect., 2014, 122(6), 601-608.
[94]
Jun-Hua, S.U.; Zhang, G.W. Intercalation binding of bisphenol A with calf thymus DNA. Chin. J. Anal. Lab, 2015, 34(5), 497-502.
[95]
Xie, X.; Wang, X.; Xu, X.; Sun, H.; Chen, X. Investigation of the interaction between endocrine disruptor bisphenol A and human serum albumin. Chemosphere, 2010, 80(9), 1075-1080.
[96]
Zhao, L.Z.; Tian, X.Y.; Teng, H.H. Study on the interaction of bisphenol A and bovine serum albumin by spectroscopy. Liaon. Chem. Indust., 2012, 41(12), 1245-1247.
[97]
Chi, Z.; Liu, R.; Zhang, H. Noncovalent interaction of oxytetracycline with the enzyme trypsin. Biomacromolecules, 2010, 11(9), 2454.
[98]
Zong, W.; Liu, R.; Feng, S.; Teng, Y. A new strategy to identify and eliminate the inner filter effects by outer filter technique. J. Fluoresc., 2011, 21(3), 1249.
[99]
Luciani, X.; Mounier, S.; Redon, R.; Bois, A. A simple correction method of inner filter effects affecting FEEM and its application to the PARAFAC decomposition. Chemomet. Intelligent Lab. Syst., 2009, 96(2), 227-238.
[100]
Weert, M.V.D.; Stella, L. Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. J. Mol. Struct., 2011, 998(1), 144-150.
[101]
Keswani, N.; Choudhary, S.; Kishore, N. Quantitative aspects of recognition of the antibiotic drug oxytetracycline by bovine serum albumin: Calorimetric and spectroscopic studies. J. Chem. Thermodyn., 2013, 58(3), 196-205.
[102]
Huang, J.X.; Cooper, M.A.; Baker, M.A. Mohammad, Azad, A.K.; Nation, R.L.; Li, J.; Velkov, T. Drug-binding energetics of human α-1-acid glycoprotein assessed by isothermal titration calorimetry and molecular docking simulations. J. Mol. Recognit., 2012, 25(12), 642-656.
[103]
Zhang, R.; Zhao, L.; Liu, R. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods. J. Photochem. Photobiol. B Biol., 2016, 163, 40-46.
[104]
Rui, Z.; Liu, R.; Zong, W. Bisphenol s interacts with catalase and induces oxidative stress in mouse liver and renal cells. J. Agric. Food Chem., 2016, 64(34), 6630.
[105]
Carwile, J.L.; Michels, K.B. Urinary bisphenol A and obesity: NHANES 2003-2006. Environ. Res., 2011, 111(6), 825.
[106]
Trasande, L.; Attina, T.M.; Blustein, J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. Jama, 2012, 308(11), 1113-1121.
[107]
Ke, Z.H.; Pan, J.X.; Jin, L.Y.; Xu, H-Y.; Yu, T-T. Kamran Ullah, Tanzil Ur Rahman, Ren, J.; Cheng, Y.; Dong, X.-Y.; Sheng, J.-Z.; Huang, H.-F. Bisphenol A exposure may induce hepatic lipid accumulation via reprogramming the dna methylation patterns of genes involved in lipid metabolism. Sci. Rep., 2016, 6, 31331.
[108]
Maina, V.; Sutti, S.; Locatelli, I.; Vidali, M.; Mombello, C.; Bozzola, C.; Albano, E. Bias in macrophage activation pattern influences non-alcoholic steatohepatitis (NASH) in mice. Clin. Sci., 2012, 122(11), 545.
[109]
Wan, J.; Benkdane, M.; Teixeira-Clerc, F.; Bonnafous, S.; Louvet, A.; Lafdil, F.; Pecker, F.; Tran, A.; Gual, P.; Mallat, A.; Lotersztajn, S.; Pavoine, C. M2 Kupffer cells promote M1 Kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology, 2014, 59(1), 130-142.
[110]
Li, T.; Gao, R.F.; Yang, S.M. Regulation of Atg5 on hepatic lipid deposition induced by bisphenol A. J. Chongqing Med. Univ., 2015, 3, 350-353.
[111]
Chen, L.; Hou, Y.; Du, T.X. Effects of Bisphenol A on metabolismof glucose and lipid in mice. Chin. J. Clin. Pharmacol. Therapeut, 2014, 19(3), 265-270.
[112]
Kammoun, H.L.; Chabanon, H.; Hainault, I.; Luquet, S.; Magnan, C.; Koike, T.; Ferré, P.; Foufelle, F. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Investigat., 2009, 119(5), 1201.
[113]
Lin, C.F. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: A birth cohort study in Taiwan. Environ. Health A Global Access Sci. Source, 2011, 10(1), 94.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy