Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Mangrove Plants as a Source of Bioactive Compounds: A Review

Author(s): Nilesh Lakshman Dahibhate, Ankush Ashok Saddhe and Kundan Kumar*

Volume 9, Issue 2, 2019

Page: [86 - 97] Pages: 12

DOI: 10.2174/2210315508666180910125328

Price: $65

Abstract

Mangroves are unique coastal forest ecosystem distributed along the tropical and subtropical region of the world. They are evolutionarily adapted to combat against hostile environmental conditions such as low oxygen, high salinity, and temperature. The adaptive features endowed with novel secondary metabolic pathways and bioactive compounds to sustain in harsh conditions. The novel metabolites are a rich source of the wide range of bioactive compounds and natural products. It includes terpenoids, alkaloids, phenolics, saponins, flavonoids, and steroids. The bioactive and natural compounds may serve as therapeutic precursors and industrial raw materials. Terpenes and polyphenols have antiviral, antibacterial, antifungal, antimalarial, anticancer or combination of activities. To date, several mangroves plants were examined and recognized as a potential source of novel natural product for exploitation in medicine. In fact, most of the isolated compounds are novel and showed promising biological activities such as gastroprotective, cytotoxic, antioxidant, antibacterial, antifungal, antiviral, enzyme activation and inhibition, immunosuppressive, anti-inflammatory, antifeedant effects. In the present review, we have compiled the achievements and progress in mangroves natural products research of the last decade.

Keywords: Mangrove, bioactive, terpenoids, alkaloids, secondary metabolites, ecosystem.

Graphical Abstract
[1]
Saddhe, A.A.; Jamdade, R.A.; Kumar, K. Assessment of mangroves from Goa, west coast India using DNA barcode. Springerplus, 2016, 5, 1-10.
[2]
Saddhe, A.A.; Jamdade, R.A.; Kumar, K. Evaluation of multilocus marker efficacy for delineating mangrove species of West Coast India. PLoS One, 2017, 12(8), 1-15.
[3]
Chandrakala, N.; Rajeswari, S. Medicinal potentials and bioactive compounds from mangroves. A review. Int. J. Curr. Innov. Res, 2017, 3(2), 572-576.
[4]
Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2014, 2, 377-392.
[5]
Du, S.J.; Qin, Z.H.; Wang, M.A.; Zhu, W.; Han, C.R.; Bi, H.P. GC-MS analysis of the essential oils from Xylocarpus granatum. J. Hainan. Normal. Univ., 2007, 20, 247-250.
[6]
Cui, J.X.; Deng, Z.W.; Li, J.; Fu, H.Z.; Proksch, P.; Lin, W.H. Phragmalin-type limonoids from the mangrove plant Xylocarpus granatum. Phytochemistry, 2005, 6, 2334-2339.
[7]
Sadhu, S.K.; Ahmed, F.; Ohtsuki, T.; Ishibashi, M. Flavonoids from Sonneratia caseolaris. J. Nat. Med., 2016, 60, 264-265.
[8]
Taniguchi, K.; Funasaki, M.; Kishida, A.; Sadhu, S.K.; Ahmed, F.; Ishibashi, M.; Ohsaki, A. Two new coumarins and a new xanthone from the leaves of Rhizophora mucronata. Bioorg. Med. Chem. Lett., 2018, 28, 1063-1066.
[9]
Zhang, D.; Wu, J.; Zhang, S.; Huang, J. Oleananetriterpenes from Aegiceras corniculatum. Fitoterapia, 2005, 76, 131-133.
[10]
Homhual, S.; Bunyapraphatsara, N.; Kondratyuk, T.; Herunsalee, A.; Chaukul, W.; Pezzuto, J.M.; Fong, H.H.; Zhang, H.J. Bioactive dammarane triterpenes from the mangrove plant Bruguiera gymnorrhiza. J. Nat. Prod., 2006, 69, 421-424.
[11]
Huong, P.T.; Diep, C.N.; Thanh, N.V.; Tu, V.A.; Hanh, T.H.; Cuong, N.T.; Thao, N.P.; Cuong, N.X.; Do Thao, T. A new cycloartane glucoside from Rhizophora stylosa. Nat. Prod. Commun., 2014, 9, 1255-1257.
[12]
Cui, J.; Ouyang, J.; Deng, Z.; Lin, W. Structure elucidation of an unprecedented alkaloid and a new limonoid from Xylocarpus granatum. Magn. Reson. Chem., 2008, 46(9), 894-897.
[13]
Spalding, M.; Mami, K.; Lorna, C. World atlas of mangroves. Routledge, ebook,, 2010.
[14]
Premnathan, M.; Chandra, K.; Bajpai, S.K.; Kathiresan, K. A survey of some Indian marine plants for antiviral activity. Bot. Mar., 1992, 35, 321-324.
[15]
Bandaranayake, W.M. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes, 1998, 3, 133-148.
[16]
Saranya, A.; Ramanathan, T.; Kesavanarayanan, K.S.; Adam, A. Traditional medicinal uses, chemical constituents and biological activities of a mangrove plant, Acanthus ilicifolius Linn. A brief review. Am.-Eurasian J. Agric. Environ. Sci., 2015, 15(2), 243-250.
[17]
Marston, A.; Hostettmenn, K. Plant molluscicides. Phytochemistry, 1985, 24, 639-652.
[18]
Bandaranayake, W.M. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecol. Manage., 2002, 10, 421-452.
[19]
Sen, P.; Kumar, S.S.; Seethalakshmi, I. Antioxidant and anticancer effects of Excoecaria agallocha and Avicennia. J. Pharma Res., 2013, 6(4), 414-417.
[20]
Das, G.; Gouda, S.; Mohanta, Y.K.; Patra, J.K. Mangrove plants: A potential source for anticancer drugs. Indian J. Mar. Sci., 2015, 44(5), 1-7.
[21]
Saranraj, P.; Sujitha, D. Mangrove Medicinal Plants: A Review. Am-Euras. J. Toxicol. Sci., 2015, 7(3), 146-156.
[22]
Shilpi, J.A.; Islam, M.E.; Billah, M.; Islam, K.; Sabrin, F.; Uddin, S.J.; Nahar, L.; Sarker, S.D. Antinociceptive, anti-inflammatory, and antipyretic activity of mangrove plants: A mini review. Adv. Pharmacol. Sci., 2012, 2012, 1-7.
[23]
Prabhu, V.V.; Guruvayoorappan, C. Anti-inflammatory and anti-tumor activity of the marine mangrove Rhizophora apiculata. J. Immunotoxicol., 2012, 9(4), 341-352.
[24]
Gouda, S.; Das, G. Mangroves: A rich source of natural bioactive compounds.Recent Advances in Natural Products. Sujogya Kumar Panda; Studium Press LLC: U.S.A., 2015, pp. 1-12.
[25]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2017, 34(3), 235-294.
[26]
Titus, D.; Samuel, E.J.; Roopan, S.M. Importance of food science and technology-way to future. In: Bioorganic Phase in Natural Food: An Overview; Roopan, S.M.; Madhumitha, G., Eds.; Springer: Cham, 2018, pp. 11-24.
[27]
Greenwell, M.; Rahman, P.K. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[28]
Losada-Echeberría, M.; Herranz-López, M.; Micol, V.; Barrajón-Catalán, E. Polyphenols as promising drugs against main breast cancer signatures. Antioxidants, 2017, 6(4), 88.
[29]
Vinh, L.B.; Nguyet, N.T.; Yang, S.Y.; Kim, J.H.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; Minh, C.V.; Hwang, I.; Kim, Y.H. Cytotoxic triterpene saponins from the mangrove Aegiceras corniculatum. Nat. Prod. Res., 2017, 16, 1-7.
[30]
Van, T. Hieu, N.; Huong, L.H.; Linh, P.T.; Cuong, T.M.; Nam, N.X.; Dai, Q.; Van, N.; Minh, C.; Excoecarins L and O from the mangrove plant Excoecaria agallocha L. Phytochem. Lett., 2018, 25, 52-55.
[31]
Gong, K.K.; Li, P.L.; Qiao, D.; Zhang, X.W.; Chu, M.J.; Qin, G.F.; Tang, X.L.; Li, G.Q. Cytotoxic and antiviral triterpenoids from the mangrove plant Sonneratia paracaseolaris. Molecules, 2017, 22, 1-11.
[32]
Roy, A.; Saraf, S. Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharm. Bull., 2006, 29(2), 191-201.
[33]
Liao, M.; Pedpradab, P.; Wu, J. Thaixylogranins A-H: Eight new limonoids from the Thai mangrove, Xylocarpus granatum. Phytochem. Lett., 2017, 19, 126-131.
[34]
Zhou, Z.F.; Taglialatela-Scafati, O.; Liu, H.L.; Gu, Y.C.; Kong, L.Y.; Guo, Y.W. Apotirucallane protolimonoids from the Chinese mangrove Xylocarpus granatum Koenig. Fitoterapia, 2014, 97, 192-197.
[35]
Wu, Y.B.; Qing, X.; Huo, C.H.; Yan, H.M.; Shi, Q.W.; Sauriol, F.; Gu, Y.C.; Kiyota, H. Xylomexicanins E-H, new limonoids from Xylocarpus granatum. Tetrahedron, 2014, 70(30), 4557-4562.
[36]
Ni, S.J.; Li, J.; Li, M.Y. Two new phenylpropanoids from the Chinese mangrove Ceriops tagal. Nat. Prod. Res., 2017, 18(1), 1-6.
[37]
Ni, S.J.; Li, J.; Li, M.Y. Two new dolabrane diterpenes from the Chinese mangrove Ceriops tagal. Chem. Biodivers., 2018, 15(3), e1700563.
[38]
Zhang, X.; Li, W.; Shen, L.; Wu, J. Four new diterpenes from the mangrove Ceriops tagal and structure revision of four dolabranes with a 4, 18-epoxy group. Fitoterapia, 2018, 1(124), 1-7.
[39]
Wu, X.; Liao, H.; Lu, H.; Zhang, C. A new dolabranedinorditerpene from Ceriops tagal. Open Access Lib, 2016, 30(3), 1-6.
[40]
Nithyamol, K.V.; Bhattacharya, D.; Chakravarty, S.; Mallavadhani, U.V. Isolation, synthesis and AChE inhibitory potential of some novel cinnamyl esters of taraxerol, the major metabolite of the mangrove Bruguiera cylindrica. Chem. Biodivers., 2018, 15(4), e1800008.
[41]
Ventola, C.L. The antibiotic resistance crisis: part 1: Causes and threats. Pharm. Ther., 2015, 4, 277-283.
[42]
Chacha, M.; Mapitse, R.; Afolayan, A.J.; Majinda, R.R.T. Antibacterial diterpenes from the roots of Ceriops tagal. Nat. Prod. Commun., 2008, 3, 17-20.
[43]
Wang, Z.C.; Lin, Y.M.; Feng, D.Q.; Ke, C.H.; Lin, P.; Yan, C.L.; Chen, J.D. A new atisane-type diterpene from the bark of the mangrove plant Excoecaria agallocha. Molecules, 2009, 14(1), 414-422.
[44]
Ponnapalli, M.G.; Annam, S.C.; Ravirala, S.; Sukki, S.; Ankireddy, M.; Tuniki, V.R. Unusual isomeric corniculatolides from mangrove, Aegiceras corniculatum. J. Nat. Prod., 2012, 75(2), 275-279.
[45]
Janmanchi, H.; Raju, A.; Degani, M.S.; Ray, M.K.; Rajan, M.G. Antituberculosis, antibacterial and antioxidant activities of Aegiceras corniculatum, a mangrove plant and effect of various extraction processes on its phytoconstituents and bioactivity. S. Afr. J. Bot., 2017, 113, 421-427.
[46]
Gupta, V.K.; Mukherjee, K.; Roy, A. Two novel antifungals, acornine 1 and acornine 2, from the bark of mangrove plant Aegiceras corniculatum (Linn.) Blanco from Sundarban Estuary. Pharmacogn. Mag., 2014, 10(Suppl. 2), S342-S349.
[47]
Shijie, D.; Mingan, W.; Wen, Z.; Zhaohai, Q. A new fungicidal lactone from Xylocarpus granatum (Meliaceae). Nat. Prod. Res., 2009, 23, 1316-1321.
[48]
Sanna, G.; Madeddu, S.; Giliberti, G.; Ntalli, N.G.; Cottiglia, F.; De Logu, A.; Agus, E.; Caboni, P. Limonoids from Melia azedarach fruits as inhibitors of Flaviviruses and Mycobacterium tubercolosis. PLoS One, 2015, 10(10), e0141272.
[49]
Li, Y.; Yu, S.; Liu, D.; Proksch, P.; Lin, W. Inhibitory effects of polyphenols toward HCV from the mangrove plant Excoecaria agallocha L. Bioorg. Med. Chem. Lett., 2012, 22(2), 1099-1102.
[50]
Dai, Y.G.; Wu, J.; Padmakumar, K.P.; Shen, L. Sundarbanxylogranins A-E, five new limonoids from the Sundarban Mangrove, Xylocarpus granatum. Fitoterapia, 2017, 122, 85-89.
[51]
Li, J.; Li, M.Y.; Bruhn, T.; Katele, F.Z.; Xiao, Q.; Pedpradab, P.; Wu, J.; Bringmann, G. Thaixylomolins A-C: limonoids featuring two new motifs from the Thai Xylocarpus moluccensis. Org. Lett., 2013, 15(14), 3682-3685. a
[52]
Bravo, L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[53]
Palacios, I.; Lozano, M.; Moro, C.; D’arrigo, M.; Rostagno, M.A.; Martínez, J.A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem., 2011, 128(3), 674-678.
[54]
Foti, M.C. Antioxidant properties of phenols. J. Pharm. Pharmacol., 2007, 59(12), 1673-1685.
[55]
Hopkins, M.H.; Fedirko, V.; Jones, D.P.; Terry, P.D.; Bostick, R.M. Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: Results from a randomized, controlled clinical trial. Cancer Epidemiol. Biomarkers Prev., 2010, 19(3), 850-858.
[56]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[57]
Chacha, M. Flavanol derivatives with antioxidant activity from the stem bark of Xylocarpus granatum. Int. J. Biol. Chem. Sci., 2010, 4(2), 371-376.
[58]
Ravangpai, W.; Sommit, D.; Teerawatananond, T.; Sinpranee, N.; Palaga, T.; Pengpreecha, S.; Muangsin, N.; Pudhom, K. Limonoids from seeds of Thai Xylocarpus moluccensis. Bioorg. Med. Chem. Lett., 2011, 21(15), 4485-4489.
[59]
Li, Y.; Liu, J.; Yu, S.; Proksch, P.; Gu, J.; Lin, W. TNF-α inhibitory diterpenoids from the Chinese mangrove plant Excoecaria agallocha L. Phytochemistry, 2010, 71(17), 2124-2131.
[60]
Thao, N.P.; Tai, B.H.; Luyen, B.T.T.; Kim, S.; Koo, J.E.; Koh, Y.S. Van, Thanh, N.; Cuong, N.X.; Nam, N.H.; Van, Kiem, P.; Van, Minh, C. Chemical constituents from Kandelia candel with their inhibitory effects on pro-inflammatory cytokines production in LPS-stimulated Bone Marrow-Derived Dendritic Cells (BMDCs). Bioorg. Med. Chem. Lett., 2015, 25(7), 1412-1416.
[61]
Yan, D.M.; Gao, C.H.; Yi, X.X.; Xie, W.P.; Xu, M.B.; Huang, R.M. Two new secondary metabolites from the fruits of mangrove Avicennia marina. Z. Naturforsch. B. Chem. Sci, 2015, 70(9), 691-694.
[62]
Yao, J.E.; Shen, M.R.; Yi, X.X.; Yang, Y.; Gao, C.H. A new 8-Hydroxyquercetagetin glycoside from the hypocotyls of mangrove Bruguiera gymnorrhiza. Chem. Nat. Compd., 2017, 53(1), 33-35.
[63]
Chakraborty, K.; Raola, V.K. Two rare antioxidant and anti-inflammatory oleanenes from loop root Asiatic mangrove Rhizophora mucronata. Phytochemistry, 2017, 135, 160-168.
[64]
Ali, M.S.; Ravikumar, S.; Beula, J.M.; Anuradha, V.; Yogananth, N. Insecticidal compounds from Rhizophoraceae mangrove plants for the management of dengue vector Aedes aegypti. J. Vector Borne Dis., 2014, 51(2), 106-114.
[65]
Li, J.; Li, M.Y.; Feng, G.; Xiao, Q.; Sinkkonen, J.; Satyanandamurty, T.; Wu, J. Limonoids from the seeds of a Godavari mangrove, Xylocarpus moluccensis. Phytochemistry, 2010, 71(16), 1917-1924.
[66]
Li, J.; Li, M.Y.; Feng, G.; Zhang, J.; Karonen, M.; Sinkkonen, J.; Satyanandamurty, T.; Wu, J.; Moluccensins, R.Y. Limonoids from the seeds of a mangrove, Xylocarpus moluccensis. J. Nat. Prod., 2012, 75(7), 1277-1283.
[67]
Lakshmi, V.; Mishra, V.; Palit, G. A new gastroprotective effect of limonoid compounds xyloccensins x and y from Xylocarpus moluccensis in rats. Nat. Prod. Bioprospect., 2014, 4(5), 277-283.
[68]
Lakshmi, V.; Mahdi, A.A.; Agrawal, S.K.; Kumar, R. Isolation and characterization of bioactive terpenoids from the leaves of Ceriops tagal Linn. Herb. Med., 2017, 3(2), 10-15.
[69]
Zhou, Z.F.; Taglialatela-Scafati, O.; Liu, H.L.; Gu, Y.C.; Kong, L.Y.; Guo, Y.W. Apotirucallane protolimonoids from the Chinese mangrove Xylocarpus granatum Koenig. Fitoterapia, 2014, 97, 192-197.
[70]
Chen, X.L.; Liu, H.L.; Li, J.; Xin, G.R.; Guo, Y.W.; Paracaseolide, A. First α-alkylbutenolide dimer with an unusual tetraquinaneoxa-cage bislactone skeleton from Chinese mangrove Sonneratia paracaseolaris. Org. Lett., 2011, 13(19), 5032-5035.
[71]
Mondal, S.; Ghosh, D.; Ramakrishna, K. A complete profile on blind-your-eye mangrove Excoecaria agallocha L. (Euphorbiaceae): Ethnobotany, phytochemistry, and pharmacological aspects. Pharmacogn. Rev., 2016, 10, 123-138.
[72]
Wu, J.; Xiao, Q.; Xu, J.; Li, Y.; Pan, Y.; Yang, H. Natural products from true mangrove flora: Source, chemistry and bioactivities. Nat. Prod. Rep., 2008, 5, 955-981.
[73]
Annam, S.C.; Ankireddy, M.; Sura, M.B.; Ponnapalli, M.G.; Sarma, A.V. Epimericexcolides from the stems of Excoecaria agallocha and structural revision of rhizophorin A. Org. Lett., 2015, 17(11), 2840-2843.
[74]
Ponnapalli, M.G.; Ankireddy, M.; Annam, S.C.; Ravirala, S.; Sukki, S.; Tuniki, V.R. Unusual ent-isopimarane-type diterpenoids from the wood of Excoecaria agallocha. Tetrahedron Lett., 2013, 54(23), 2942-2945.
[75]
Cheng, F.; Zhou, Y.; Zou, K.; Wu, J. Chemical constituents of the fruit of Xylocarpus granatum. Zhong Yao Cai, 2009, 32(8), 1220-1223.
[76]
Simlai, A.; Roy, A. Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview. Pharmacogn. Rev., 2013, 7(14), 170-178.
[77]
Cui, J.; Ouyang, J.; Deng, Z.; Lin, W. Structure elucidation of an unprecedented alkaloid and a new limonoid from Xylocarpus granatum. Magn. Reson. Chem., 2008, 46(9), 894-897.
[78]
Li, J.; Li, M.Y.; Xiao, Q.; Pedpradab, P.; Wu, J. Thaixylomolins D-F, new limonoids from the Thai true mangrove, Xylocarpus moluccensis. Phytochem. Lett., 2013, 6(3), 482-485. b
[79]
Chen, W.; Shen, L.; Li, M.; Xiao, Q.; Satyanandamurty, T.; Wu, J. Absolute configurations of new limonoids from a Krishna mangrove, Xylocarpus granatum. Fitoterapia, 2014, 94, 108-113.
[80]
Li, J.; Li, M.Y.; Bruhn, T.; Götz, D.C.; Xiao, Q.; Satyanandamurty, T.; Wu, J.; Bringmann, G. Andhraxylocarpins A-E: Structurally intriguing limonoids from the true mangroves Xylocarpus granatum and Xylocarpus moluccensis. Chem. Eur. J., 2012, 18(45), 14342-14351.
[81]
Chen, H.; Zhang, J.; Li, M.Y.; Satyanandamurty, T.; Wu, J. New limonoids from the seeds of a Krishna mangrove, Xylocarpus granatum. Chem. Biodivers., 2013, 10(4), 612-620.
[82]
Pan, J.Y.; Chen, S.L.; Li, M.Y.; Li, J.; Yang, M.H.; Wu, J. Limonoids from the seeds of a hainan mangrove, Xylocarpus granatum. J. Nat. Prod., 2010, 73(10), 1672-1679.
[83]
Li, J.; Li, M.Y.; Satyanandamurty, T.; Wu, J. Godavarin K. A new limonoid with an oxygen bridge between C (1) and C (29) from the Godavari mangrove Xylocarpus moluccensis. Helv. Chim. Acta, 2011, 94(9), 1651-1656.
[84]
Li, W.; Jiang, Z.; Shen, L. Pedpradab, P.; Bruhn, T.; Wu, J.; Bringmann, G. Antiviral limonoids including khayanolides from the Trang mangrove plant Xylocarpus moluccensis. J. Nat. Prod., 2015, 78(7), 1570-1578.
[85]
Huo, C.H.; Guo, D.; Shen, L.R.; Yin, B.W.; Sauriol, F.; Li, L.G.; Zhang, M.L.; Shi, Q.W.; Kiyota, H. Xylocarpanoids A and B, unique C28 skeleton limonoids from Xylocarpus granatum. Tetrahedron Lett., 2010, 51(4), 754-757.
[86]
Niu, K.; Shen, L.; Wu, J. A tirucallane and two pairs of tetranortriterpene 23-epimers from the Thai mangrove Xylocarpus moluccensis. J. Asian Nat. Prod. Res., 2016, 18(1), 36-40.
[87]
Peng, Y.; Ni, S.J.; Li, J.; Li, M.Y. Three new dolabrane diterpenes from the Chinese mangrove plant of Ceriops tagal. Phytochem. Lett., 2017, 21(1), 38-41.
[88]
Chen, J.D.; Qiu, Y.; Yang, Z.W.; Lin, P.; Lin, Y.M. Dimericditerpenes from the roots of the mangrove plant Ceriops tagal. Helv. Chim. Acta, 2008, 91(12), 2292-2298.
[89]
Wang, X.C.; Ouyang, X.W.; Hu, L.H. Three new lupane-type triterpenes from Ceriops tagal. J. Asian Nat. Prod. Res., 2010, 12(7), 576-581.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy