Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Changing the Concept of Type 2 Diabetes: Beta Cell Workload Hypothesis Revisited

Author(s): Yoshifumi Saisho*

Volume 19, Issue 2, 2019

Page: [121 - 127] Pages: 7

DOI: 10.2174/1871530318666180821161825

Abstract

Background: Despite a number of innovations in anti-diabetic drugs and substantial improvement in diabetes care, the number of people with diabetes continues to increase, suggesting further need to explore novel approaches to prevent diabetes. Type 2 diabetes (T2DM) is characterized by beta cell dysfunction and insulin resistance. However, insulin resistance, usually a consequence of obesity, is often emphasized and the role of beta cell dysfunction in T2DM is less appreciated.

Objective and Results: This paper summarizes recent evidence showing the importance of beta cell dysfunction in T2DM and refines the “beta cell workload hypothesis”, emphasizing the importance of beta cell preservation for the prevention and management of T2DM.

Conclusion: It is hoped that this novel concept will foster a better understanding of the pathophysiology of T2DM by not only medical staff and patients with diabetes, but also the general population, and encourage more people to adhere to a healthy lifestyle, eventually resulting in “stopping diabetes”.

Keywords: Type 2 diabetes, prevention, beta cell, lifestyle modification, empowerment, insulin resistance.

Graphical Abstract
[1]
International Diabetes Federation IDF Diabetes Atlas, 8th edn. Available at . http://www.idf.org/diabetesatlas [Accessed September 1, 2018].
[2]
Saisho, Y. Prevention of beta cell “karoshi”: A new paradigm for prevention and management of type 2 diabetes. Med. Res. Arch., 2016, 4(6), 1-19.
[3]
Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet, 2014, 383(9911), 69-82.
[4]
Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988, 37(12), 1595-1607.
[5]
Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52(1), 102-110.
[6]
Rahier, J.; Guiot, Y.; Goebbels, R.M.; Sempoux, C.; Henquin, J.C. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab., 2008, 10(Suppl. 4), 32-42.
[7]
Yoon, K.H.; Ko, S.H.; Cho, J.H.; Lee, J.M.; Ahn, Y.B.; Song, K.H.; Yoo, S.J.; Kang, M.I.; Cha, B.Y.; Lee, K.W.; Son, H.Y.; Kang, S.K.; Kim, H.S.; Lee, I.K.; Bonner-Weir, S. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab., 2003, 88(5), 2300-2308.
[8]
Sakuraba, H.; Mizukami, H.; Yagihashi, N.; Wada, R.; Hanyu, C.; Yagihashi, S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia, 2002, 45(1), 85-96.
[9]
Inaishi, J.; Saisho, Y.; Sato, S.; Kou, K.; Murakami, R.; Watanabe, Y.; Kitago, M.; Kitagawa, Y.; Yamada, T.; Itoh, H. Effects of obesity and diabetes on alpha- and beta-cell mass in surgically resected human pancreas. J. Clin. Endocrinol. Metab., 2016, 101(7), 2874-2882.
[10]
Meier, J.J.; Bhushan, A.; Butler, A.E.; Rizza, R.A.; Butler, P.C. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: Indirect evidence for islet regeneration? Diabetologia, 2005, 48(11), 2221-2228.
[11]
Meier, J.J.; Bonadonna, R.C. Role of reduced beta-cell mass versus impaired beta-cell function in the pathogenesis of type 2 diabetes. Diabetes Care, 2013, 36(Suppl. 2), S113-S119.
[12]
Robertson, R.P. Estimation of beta-cell mass by metabolic tests: Necessary, but how sufficient? Diabetes, 2007, 56(10), 2420-2424.
[13]
Meier, J.J.; Menge, B.A.; Breuer, T.G.; Muller, C.A.; Tannapfel, A.; Uhl, W.; Schmidt, W.E.; Schrader, H. Functional assessment of pancreatic beta-cell area in humans. Diabetes, 2009, 58(7), 1595-1603.
[14]
Cline, G.W.; Naganawa, M.; Chen, L.; Chidsey, K.; Carvajal-Gonzalez, S.; Pawlak, S.; Rossulek, M.; Zhang, Y.; Bini, J.; McCarthy, T.J.; Carson, R.E.; Calle, R.A. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia, 2018, 61(12), 2598-2607.
[15]
Bergman, R.N.; Phillips, L.S.; Cobelli, C. Physiologic evaluation of factors controlling glucose tolerance in man: Measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest., 1981, 68(6), 1456-1467.
[16]
U.K. Prospective Diabetes Study Group. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: A progressive disease. Diabetes, 1995, 44(11), 1249-1258.
[17]
DeFronzo, R.A.; Abdul-Ghani, M.A. Preservation of beta-cell function: The key to diabetes prevention. J. Clin. Endocrinol. Metab., 2011, 96(8), 2354-2366.
[18]
Saisho, Y. Beta cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J. Diabetes, 2015, 6(1), 109-124.
[19]
Matthews, D.R.; Cull, C.A.; Stratton, I.M.; Holman, R.R.; Turner, R.C. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet. Med., 1998, 15(4), 297-303.
[20]
Kahn, S.E.; Lachin, J.M.; Zinman, B.; Haffner, S.M.; Aftring, R.P.; Paul, G.; Kravitz, B.G.; Herman, W.H.; Viberti, G.; Holman, R.R. Effects of rosiglitazone, glyburide, and metformin on beta-cell function and insulin sensitivity in ADOPT. Diabetes, 2011, 60(5), 1552-1560.
[21]
TODAY study group. effects of metformin, metformin plus rosiglitazone, and metformin plus lifestyle on insulin sensitivity and beta-cell function in today. Diabetes Care, 2013, 36(6), 1749-1757.
[22]
Leibowitz, G.; Cahn, A.; Bhatt, D.L.; Hirshberg, B.; Mosenzon, O.; Wei, C.; Jermendy, G.; Sheu, W.H.; Sendon, J.L.; Im, K.; Braunwald, E.; Scirica, B.M.; Raz, I. Impact of treatment with saxagliptin on glycaemic stability and beta-cell function in the SAVOR-TIMI 53 study. Diabetes Obes. Metab., 2015, 17(5), 487-494.
[23]
Saisho, Y.; Kou, K.; Tanaka, K.; Abe, T.; Kurosawa, H.; Shimada, A.; Meguro, S.; Kawai, T.; Itoh, H. Postprandial serum C-peptide to plasma glucose ratio as a predictor of subsequent insulin treatment in patients with type 2 diabetes. Endocr. J., 2011, 58(4), 315-322.
[24]
Saisho, Y.; Kou, K.; Tanaka, K.; Abe, T.; Shimada, A.; Kawai, T.; Itoh, H. Association between beta cell function and future glycemic control in patients with type 2 diabetes. Endocr. J., 2013, 60(4), 517-523.
[25]
Saisho, Y.; Tanaka, K.; Abe, T.; Kawai, T.; Itoh, H. Lower beta cell function relates to sustained higher glycated albumin to glycated hemoglobin ratio in Japanese patients with type 2 diabetes. Endocr. J., 2014, 61(2), 149-157.
[26]
Meier, J.J.; Breuer, T.G.; Bonadonna, R.C.; Tannapfel, A.; Uhl, W.; Schmidt, W.E.; Schrader, H.; Menge, B.A. Pancreatic diabetes manifests when beta cell area declines by approximately 65% in humans. Diabetologia, 2012, 55(5), 1346-1354.
[27]
Ritzel, R.A.; Butler, A.E.; Rizza, R.A.; Veldhuis, J.D.; Butler, P.C. Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care, 2006, 29(3), 717-718.
[28]
Saisho, Y.; Butler, A.E.; Manesso, E.; Elashoff, D.; Rizza, R.A.; Butler, P.C. b-Cell mass and turnover in humans: Effects of obesity and aging. Diabetes Care, 2013, 36(1), 111-117.
[29]
Polonsky, K.S.; Given, B.D.; Van Cauter, E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J. Clin. Invest., 1988, 81(2), 442-448.
[30]
Robertson, R.P. Antioxidant drugs for treating beta-cell oxidative stress in type 2 diabetes: Glucose-centric versus insulin-centric therapy. Discov. Med., 2010, 9(45), 132-137.
[31]
Scheuner, D.; Kaufman, R.J. The unfolded protein response: A pathway that links insulin demand with beta-cell failure and diabetes. Endocr. Rev., 2008, 29(3), 317-333.
[32]
Eizirik, D.L.; Cardozo, A.K.; Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev., 2008, 29(1), 42-61.
[33]
Supale, S.; Li, N.; Brun, T.; Maechler, P. Mitochondrial dysfunction in pancreatic beta cells. TEM, 2012, 23(9), 477-487.
[34]
Haataja, L.; Gurlo, T.; Huang, C.J.; Butler, P.C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev., 2008, 29(3), 303-316.
[35]
Hull, R.L.; Westermark, G.T.; Westermark, P.; Kahn, S.E. Islet amyloid: A critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab., 2004, 89(8), 3629-3643.
[36]
Dinarello, C.A.; Donath, M.Y.; Mandrup-Poulsen, T. Role of IL-1beta in type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes., 2010, 17(4), 314-321.
[37]
Masini, M.; Bugliani, M.; Lupi, R.; del Guerra, S.; Boggi, U.; Filipponi, F.; Marselli, L.; Masiello, P.; Marchetti, P. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia, 2009, 52(6), 1083-1086.
[38]
Talchai, C.; Xuan, S.; Lin, H.V.; Sussel, L.; Accili, D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell, 2012, 150(6), 1223-1234.
[39]
Hunter, C.S.; Stein, R.W. Evidence for loss in identity, de-differentiation, and trans-differentiation of islet beta-cells in type 2 diabetes. Front. Genet., 2017, 8, 35.
[40]
Poitout, V.; Robertson, R.P. Glucolipotoxicity: Fuel excess and beta-cell dysfunction. Endocr. Rev., 2008, 29(3), 351-366.
[41]
Kahn, S.E.; Haffner, S.M.; Heise, M.A.; Herman, W.H.; Holman, R.R.; Jones, N.P.; Kravitz, B.G.; Lachin, J.M.; O’Neill, M.C.; Zinman, B.; Viberti, G. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med., 2006, 355(23), 2427-2443.
[42]
Weng, J.; Li, Y.; Xu, W.; Shi, L.; Zhang, Q.; Zhu, D.; Hu, Y.; Zhou, Z.; Yan, X.; Tian, H.; Ran, X.; Luo, Z.; Xian, J.; Yan, L.; Li, F.; Zeng, L.; Chen, Y.; Yang, L.; Yan, S.; Liu, J.; Li, M.; Fu, Z.; Cheng, H. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: A multicentre randomised parallel-group trial. Lancet, 2008, 371(9626), 1753-1760.
[43]
Gerstein, H.C.; Bosch, J.; Dagenais, G.R.; Diaz, R.; Jung, H.; Maggioni, A.P.; Pogue, J.; Probstfield, J.; Ramachandran, A.; Riddle, M.C.; Ryden, L.E.; Yusuf, S. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med., 2012, 367(4), 319-328.
[44]
Rise consortium. impact of insulin and metformin versus metformin alone on beta-cell function in youth with impaired glucose tolerance or recently diagnosed type 2 diabetes. Diabetes Care, 2018.
[45]
Del Prato, S.; Camisasca, R.; Wilson, C.; Fleck, P. Durability of the efficacy and safety of alogliptin compared with glipizide in type 2 diabetes mellitus: A 2-year study. Diabetes Obes. Metab., 2014, 16(12), 1239-1246.
[46]
Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[47]
Nauck, M.; Weinstock, R.S.; Umpierrez, G.E.; Guerci, B.; Skrivanek, Z.; Milicevic, Z. Efficacy and safety of dulaglutide versus sitagliptin after 52 weeks in type 2 diabetes in a randomized controlled trial (AWARD-5). Diabetes Care, 2014, 37(8), 2149-2158.
[48]
Ahren, B.; Masmiquel, L.; Kumar, H.; Sargin, M.; Karsbol, J.D.; Jacobsen, S.H.; Chow, F. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): A 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol., 2017, 5(5), 341-354.
[49]
Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.; Woerle, H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest., 2014, 124(2), 499-508.
[50]
Del Prato, S.; Nauck, M.; Duran-Garcia, S.; Maffei, L.; Rohwedder, K.; Theuerkauf, A.; Parikh, S. Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data. Diabetes Obes. Metab., 2015, 17(6), 581-590.
[51]
Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; Steinberg, W.M.; Stockner, M.; Zinman, B.; Bergenstal, R.M.; Buse, J.B. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med., 2016, 375(4), 311-322.
[52]
Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jodar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; Woo, V.; Hansen, O.; Holst, A.G.; Pettersson, J.; Vilsboll, T. Investigators, s.-. semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med., 2016, 375(19), 1834-1844.
[53]
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med., 2015, 373(22), 2117-2128.
[54]
Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; Group, C.P.C. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med., 2017, 377(7), 644-657.
[55]
American diabetes association, 8. pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2018. Diabetes Care, 2018, 41(Suppl. 1), S73-S85.
[56]
Nathan, D.M.; Buse, J.B.; Kahn, S.E.; Krause-Steinrauf, H.; Larkin, M.E.; Staten, M.; Wexler, D.; Lachin, J.M. Rationale and design of the glycemia reduction approaches in diabetes: A comparative effectiveness study (GRADE). Diabetes Care, 2013, 36(8), 2254-2261.
[57]
Wing, R.R. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: Four-year results of the Look AHEAD trial. Arch. Intern. Med., 2010, 170(17), 1566-1575.
[58]
Gregg, E.W.; Chen, H.; Wagenknecht, L.E.; Clark, J.M.; Delahanty, L.M.; Bantle, J.; Pownall, H.J.; Johnson, K.C.; Safford, M.M.; Kitabchi, A.E.; Pi-Sunyer, F.X.; Wing, R.R.; Bertoni, A.G. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA, 2012, 308(23), 2489-2496.
[59]
Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; Rodrigues, A.M.; Rehackova, L.; Adamson, A.J.; Sniehotta, F.F.; Mathers, J.C.; Ross, H.M.; McIlvenna, Y.; Stefanetti, R.; Trenell, M.; Welsh, P.; Kean, S.; Ford, I.; McConnachie, A.; Sattar, N.; Taylor, R. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet, 2018, 391(10120), 541-551.
[60]
Cefalu, W.T.; Rubino, F.; Cummings, D.E. Metabolic surgery for type 2 diabetes: Changing the landscape of diabetes care. Diabetes Care, 2016, 39(6), 857-860.
[61]
Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Nanni, G.; Castagneto, M.; Bornstein, S.; Rubino, F. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet, 2015, 386(9997), 964-973.
[62]
Nguyen, K.T.; Billington, C.J.; Vella, A.; Wang, Q.; Ahmed, L.; Bantle, J.P.; Bessler, M.; Connett, J.E.; Inabnet, W.B.; Thomas, A.; Ikramuddin, S.; Korner, J. Preserved insulin secretory capacity and weight loss are the predominant predictors of glycemic control in patients with type 2 diabetes randomized to roux-en-y gastric bypass. Diabetes, 2015, 64(9), 3104-3110.
[63]
Tuomilehto, J.; Lindstrom, J.; Eriksson, J.G.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; Salminen, V.; Uusitupa, M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med., 2001, 344(18), 1343-1350.
[64]
Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med., 2002, 346(6), 393-403.
[65]
Li, G.; Zhang, P.; Wang, J.; An, Y.; Gong, Q.; Gregg, E.W.; Yang, W.; Zhang, B.; Shuai, Y.; Hong, J.; Engelgau, M.M.; Li, H.; Roglic, G.; Hu, Y.; Bennett, P.H. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the da qing diabetes prevention study: A 23-year follow-up study. Lancet Diabetes Endocrinol., 2014, 2(6), 474-480.
[66]
Diabetes Prevention Program Research. G. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The diabetes prevention program outcomes study. Lancet Diabetes Endocrinol., 2015, 3(11), 866-875.
[67]
Knowler, W.C.; Hamman, R.F.; Edelstein, S.L.; Barrett-Connor, E.; Ehrmann, D.A.; Walker, E.A.; Fowler, S.E.; Nathan, D.M.; Kahn, S.E. Prevention of type 2 diabetes with troglitazone in the diabetes prevention program. Diabetes, 2005, 54(4), 1150-1156.
[68]
Defronzo, R.A.; Tripathy, D.; Schwenke, D.C.; Banerji, M.; Bray, G.A.; Buchanan, T.A.; Clement, S.C.; Gastaldelli, A.; Henry, R.R.; Kitabchi, A.E.; Mudaliar, S.; Ratner, R.E.; Stentz, F.B.; Musi, N.; Reaven, P.D. Prevention of diabetes with pioglitazone in act now: Physiologic correlates. Diabetes, 2013, 62(11), 3920-3926.
[69]
Holman, R.R.; Coleman, R.L.; Chan, J.C.N.; Chiasson, J.L.; Feng, H.; Ge, J.; Gerstein, H.C.; Gray, R.; Huo, Y.; Lang, Z.; McMurray, J.J.; Ryden, L.; Schroder, S.; Sun, Y.; Theodorakis, M.J.; Tendera, M.; Tucker, L.; Tuomilehto, J.; Wei, Y.; Yang, W.; Wang, D.; Hu, D.; Pan, C. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol., 2017, 5(11), 877-886.
[70]
Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; Wilding, J.P.; Obesity, S.; Prediabetes, N.N.S.G. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med., 2015, 373(1), 11-22.
[71]
Frandsen, C.S.; Dejgaard, T.F.; Madsbad, S. Non-insulin drugs to treat hyperglycaemia in type 1 diabetes mellitus. Lancet Diabetes Endocrinol., 2016, 4(9), 766-780.
[72]
Yeung, R.O.; Hannah-Shmouni, F.; Niederhoffer, K.; Walker, M.A. Not quite type 1 or type 2, what now? Review of monogenic, mitochondrial, and syndromic diabetes. Rev. Endocr. Metab. Disord., 2018.
[73]
Hattersley, A.T.; Patel, K.A. Precision diabetes: Learning from monogenic diabetes. Diabetologia, 2017, 60(5), 769-777.
[74]
Saisho, Y.; Miyakoshi, K.; Tanaka, M.; Shimada, A.; Ikenoue, S.; Kadohira, I.; Yoshimura, Y.; Itoh, H. Beta cell dysfunction and its clinical significance in gestational diabetes. Endocr. J., 2010, 57(11), 973-980.
[75]
Saisho, Y.; Miyakoshi, K.; Ikenoue, S.; Kasuga, Y.; Matsumoto, T.; Minegishi, K.; Yoshimura, Y.; Itoh, H. Marked decline in beta cell function during pregnancy leads to the development of glucose intolerance in Japanese women. Endocr. J., 2013, 60(4), 533-539.
[76]
Sone, H.; Ito, H.; Ohashi, Y.; Akanuma, Y.; Yamada, N. Obesity and type 2 diabetes in Japanese patients. Lancet, 2003, 361(9351), 85.
[77]
Araneta, M.R.G.; Kanaya, A.M.; Hsu, W.C.; Chang, H.K.; Grandinetti, A.; Boyko, E.J.; Hayashi, T.; Kahn, S.E.; Leonetti, D.L.; McNeely, M.J.; Onishi, Y.; Sato, K.K.; Fujimoto, W.Y. Optimum bmi cut points to screen asian americans for type 2 diabetes. Diabetes Care, 2015, 38(5), 814-820.
[78]
Koshizaka, M.; Lopes, R.D.; Newby, L.K.; Clare, R.M.; Schulte, P.J.; Tricoci, P.; Mahaffey, K.W.; Ogawa, H.; Moliterno, D.J.; Giugliano, R.P.; Huber, K.; James, S.; Harrington, R.A.; Alexander, J.H. Obesity, diabetes, and acute coronary syndrome: Differences between Asians and whites. Am. J. Med., 2017, 130(10), 1170-1176.
[79]
Kou, K.; Saisho, Y.; Satoh, S.; Yamada, T.; Itoh, H. Change in beta-cell mass in Japanese nondiabetic obese individuals. J. Clin. Endocrinol. Metab., 2013, 98(9), 3724-3730.
[80]
Sato, S.; Saisho, Y.; Inaishi, J.; Kou, K.; Murakami, R.; Yamada, T.; Itoh, H. Effects of glucocorticoid treatment on beta- and alpha-cell mass in japanese adults with and without diabetes. Diabetes, 2015, 64(8), 2915-2927.
[81]
Inaishi, J.; Saisho, Y. Ethnic similarities and differences in the relationship between beta cell mass and diabetes. J. Clin. Med., 2017, 6(12), 113.
[82]
Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of hyperglycemia in type 2 diabetes, 2015: A patient-centered approach: Update to a position statement of the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care, 2015, 38(1), 140-149.

© 2024 Bentham Science Publishers | Privacy Policy