Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Vigilance States: Central Neural Pathways, Neurotransmitters and Neurohormones

Author(s): Michele Iovino, Tullio Messana, Giovanni De Pergola, Emanuela Iovino, Edoardo Guastamacchia, Vito Angelo Giagulli and Vincenzo Triggiani*

Volume 19, Issue 1, 2019

Page: [26 - 37] Pages: 12

DOI: 10.2174/1871530318666180816115720

Price: $65

Abstract

Background and Objective: The sleep-wake cycle is characterized by a circadian rhythm involving neurotransmitters and neurohormones that are released from brainstem nuclei and hypothalamus. The aim of this review is to analyze the role played by central neural pathways, neurotransmitters and neurohormones in the regulation of vigilance states.

Method: We analyzed the literature identifying relevant articles dealing with central neural pathways, neurotransmitters and neurohormones involved in the control of wakefulness and sleep.

Results: The reticular activating system is the key center in the control of the states of wakefulness and sleep via alertness and hypnogenic centers. Neurotransmitters and neurohormones interplay during the dark-light cycle in order to maintain a normal plasmatic concentration of ions, proteins and peripheral hormones, and behavioral state control.

Conclusion: An updated description of pathways, neurotransmitters and neurohormones involved in the regulation of vigilance states has been depicted.

Keywords: Vigilance states, sleep-wake cycle, reticular activating system, EEG, locus coeruleus, raphe nuclei, suprachiasmatic nucleus, neurotransmitters, neurohormones.

Graphical Abstract
[1]
Poenaru, S.; Rouhani, S.; Rayssiguier, Y.; Durlach, J.; Regnard, J.; Iovino, M. Electrophysiological parameters in the male wistar rat. Acta Neurol. (Napoli), 1983, 5, 337-345.
[2]
Poenaru, S.; Rohuani, S.; Durlach, J.; Aymard, N.; Belkahla, F.; Iovino, M. Vigilance states and cerebral monoamine metabolism in experimental magnesium deficiency. Magnesium, 1984, 3, 145-151.
[3]
Moruzzi, G.; Magoun, H.W. Brain stem reticular formation and activation of EEG. Electroencephalogr. Clin. Neurophysiol., 1949, 4, 455-473.
[4]
Magoun, H.W. The ascending reticular activating system. Res. Publ. Assoc. Res. Nerv. Ment. Dis., 1952, 30, 480-492.
[5]
Neylan, T.C. Physiology of arousal: Moruzzi and Magoun’s ascending reticular activating system. J. Neuropsychiatry Clin. Neurosci., 1995, 7(2), 250.
[6]
Aston-Jones, G.; Bloom, F.E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci., 1981, 1(8), 876-886.
[7]
Berridge, C.W. Noradrenergic modulation of arousal. Brain Res. Brain, 2008, 5, 1-17.
[8]
Takahashi, K.; Kayama, Y.; Lin, J.S.; Sakai, K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience, 2010, 169, 1115-1126.
[9]
Cirielli, C.; Huber, R.; Gopalakrishanan, A.; Southard, T.L.; Tononi, G. Locus coeruleus control of slow-wave homeostasis. J. Neurosci., 2005, 25, 4503-4511.
[10]
Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci., 2010, 13, 1526-1533.
[11]
Belkin, M.R.; Schwartz, T.L. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder. Drugs Context, 2015, 4, 212-286.
[12]
Malenka, R.C.; Nestler, E.J.; Hyman, S.E. Widely projecting systems: Monoamines, acetylcholine and orexin.in: Sydor a., brown ry. Molecular Neuropharmacology: A foundation for Clinical Neuroscience; McGraw-Hill: New York, 2009, pp. 175-176.
[13]
Iwanczuk, W.; Guzniczake, P. Neurophysiological foundations of sleep, arousal, awareness and consciousness phenomena. part 1. anaesthesiol. Intensive Ther., 2015, 47, 162-167.
[14]
Burlet, S.; Tyler, C.J.; Leonard, C.S. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: Implications for wakefulness and narcolepsy. J. Neurosci., 2002, 22, 2862-2872.
[15]
Saalmann, Y.B. Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Front. Syst. Urosci., 2014, 8, 83-102.
[16]
Mc Cann, U.D.; Penetar, D.M.; Shaham, Y.; Thorne, D.R.; Sing, H.C.; Thomas, M.L.; Gillin, J.C. Effects of catecholamine depletion on alertness and mood in rested and sleep deprived normal volunteers. Neuropsychopharmacology, 1993, 8, 345-356.
[17]
Berts, T.A. Adrenoceptor drugs and sleep. In: Wheatley D. Psychopharmacology of sleep. Raven Press, New York ,, 1981, 199- 212.
[18]
Ursin, R. Serotonin and sleep. Sleep Med. Rev., 2002, 6, 57-69.
[19]
Dugovic, C. Role of serotonin in sleep mechanisms. Rev. Neurol., 2001, 157, 516-519.
[20]
Mc Ginty, D.T. Serotonin and sleep: Molecular, functional and clinical aspects. Sleep, 2009, 32, 699-700.
[21]
Hobson, J.A.; Mc Carley, R.W.; Wyzinski, P.W. Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups. Science, 1975, 189, 55-58.
[22]
Garcia-Lorenzo, D.; Longo-Dos Santos, C.; Ewenczyk, C. Leu-Senuluscu, S.; Gallea, C.; Quattrocchi, G.; Pita Lobo, P.; Poupon C.; Benali, H. The coeruleus/subcoeruleus complex in rapid eye movement sleep behavior disorders in Parkinson’s disease. Brain, 2013, 136, 2120-2129.
[23]
Steriade, M.; Gloor, P.; Llinas, R.R.; Lopas de Silva, F.H.; Mesulam, M.M. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr. Clin. Neurophysiol., 1990, 76, 481-508.
[24]
Steriade, M. Grouping of brain rhythms in corticothalamic systems. Neuroscience, 2006, 137, 1087-1106.
[25]
Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol., 1993, 55, 349-374.
[26]
Vazquez, J.; Baghdoyan, H.A. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2012, 230, R598-R601.
[27]
Batini, C.; Moruzzi, G.; Palestini, M.; Rossi, G.F.; Zanchetti, A. Persistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science, 1958, 128, 30-32.
[28]
Fuller, P.M.; Gooley, J.J.; Saper, C.B. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation and regulatory feedback. J. Biol. Rhythms, 2006, 21, 482-493.
[29]
Villablanca, J.R. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J. Sleep Res., 2004, 13, 179-208.
[30]
Dahlstroem, A.; Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl., 1964, 232, 1-55.
[31]
Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. Suppl., 1971, 367, 1-48.
[32]
Geyer, M.A.; Puerto, A.; Dawsey, W.J.; Knapp, S.; Bullard, W.P.; Mandell, A.J. Histologic and enzymatic studies of the mesolimbic and mesocortical serotonergic pathways. Brain Res., 1976, 106, 241-256.
[33]
Delorme, F.; Froment, J.L.; Jouvet, M. Suppression du sommeil par la p-chloro-methamphetamine et p-chlorophenylalanine. C. R. Seances Soc. Biol. Fil. (Paris), 1966, 160, 2347-2351.
[34]
Dement, W.; Mitler, M.; Henriksen, S. Sleep changes during chronic administration of para-chlorophenylalanine. Rev. Can. Biol., 1972, 31, 239-246.
[35]
Sawchenko, P.E.; Swanson, L.W. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. Brain., 1982, 4, 275-325.
[36]
Oltmans, G.A.; Lorden, J.F.; Margules, D.L. Food intake and body weight: Effects of specific and non-specific lesions in the midbrain path of the ascending noradrenergic neurons of the rat. Brain Res., 1977, 128, 293-308.
[37]
Lightman, S.L.; Todd, K.; Everitt, B.J. Ascending noradrenergic projections from the brainstem: Evidence for a major role in the regulation of blood pressure and vasopressin secretion. Exp. Brain Res., 1984, 55, 145-151.
[38]
Gottesmann, C. The involvement of noradrenaline in rapid eye movement sleep mentation. Front. Neurol., 2011, 2, 81.
[39]
Factor, S.A.; Mc Alarney, T.; Sanchez-Ramos, J.R.; Weiner, W.J. Sleep disorders and sleep effect in Parkinson’s disease. Mov. Disord., 1990, 5, 280-285.
[40]
Tandberg, E.; Larsen, J.P.; Karlsen, K. A community-based study of sleep disorders in patients with Parkinson’s disease. Mov. Disord., 1998, 13, 895-899.
[41]
Hobson, D.E.; Yang, A.E.; Martin, W.R.W.; Razmy, A.; Rivest, J.; Fleming, J. Excessive daytime sleepiness and sudden-onset sleep in Parkinson disease: A survey by the Canadian movement disorders group. JAMA, 2002, 287, 455-463.
[42]
Jouvet, M.; Michel, F. New research on the structures responsible for the paradoxical phases of sleep. J. Physiol., 1960, 52, 130-131.
[43]
Dren, A.T.; Domino, E.F. Effects of hemicholinium (HC-3) on EEG activation and brain acetylcholine in the dog. J. Pharmacol. Exp. Ther., 1968, 161, 141-154.
[44]
Rainnie, D.G.; Grunze, H.C.; Mc Carley, R.W.; Green, R.W. Adenosine inhibition of mesopontine cholinergic neurons implications for EEG arousal. Science, 1994, 26, 689-692.
[45]
Steriade, M.M.; Mc Carley, R.W. Neurotransmitter-modulated currents of brainstem neurons and some their forebrain targets.In: Steriade M.M. and Mc Carley R.W. Brain control of wakefulness and sleep; Springer: New York, 2007, pp. 211-254.
[46]
Schwartz, J.R.L.; Roth, T. Neurophysiology of sleep and wakefulness: Basic science and clinical implications. Curr. Neuropharmacol., 2008, 6, 367-378.
[47]
Kayama, Y.; Ohta, M.; Jodo, E. Firing of “possibly” cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Bain Res, 1992, 569, 210-220.
[48]
Jouvet, M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb. Physiol., 1972, 64, 166-307.
[49]
Swanson, L.W. The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull., 1982, 9, 321-353.
[50]
Muzerelle, A.; Scotto-Lomassese, S.; Bernard, J.F.; Soiza-Reilly, M.; Gaspar, P. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and bainstem. Brain Struct. Funct., 2016, 221, 535-561.
[51]
Sherin, J.E.; Shiromani, P.J.; McCarley, R.W.; Saper, C.B. Activation of ventrolateral preoptic neurons during sleep. Science, 1996, 271, 216-219.
[52]
Szymusiak, R.; Alam, N.; Steininger, T.L.; Mc Ginty, D. Sleep-waking discharge pattern of venrolateral preotic/anterior hypothalamus in rats. Brain Res., 1998, 803, 178-188.
[53]
Mc Ginty, D.; Szymusiak, R. Brain structures and mechanisms involved in the generation of NREM sleep: Focus on the preoptic hypothalamus. Sleep Med. Rev., 2001, 5, 323-342.
[54]
Mc Ginty, D.; Gang, H.; Suntsova, N.; Alam, M.N.; Methippara, M. Sleep-promoting functions of the hypothalamic median preoptic nucleus: Inhibition of arousal system. Arch. Ital. Biol., 2004, 142, 501-509.
[55]
Suntsova, N.; Szymusiak, R.; Alam, M.N.; Guzman-Marin, R.; Mc Ginty, D. Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J. Physiol., 2002, 543, 66-77.
[56]
Bremer, F. Cerebral hypnogenic centers. Ann. Neurol., 1977, 2, 1-6.
[57]
Saper, C.B.; Chou, T.C.; Scammell, T.E. The sleep switch: Hypothalamic control of sleep and wakefulness. Trends Neurosci., 2001, 24, 726-731.
[58]
Chou, T.C.; Bjorkum, A.A.; Gaus, S.E.; Lu, J.; Scammell, T.C.; Saper, C.B. Afferents to the ventrolateral preoptic nucleus. J. Neurosci., 2002, 22, 977-990.
[59]
Wurtmann, R.J.; Cardinali, D.P. The pineal organ. In: Williams R.H. The textbook of Endocrinology, ed. 5. W.B. Saunders, Philadelphia,, 1974, pp. 832-850.
[60]
Klein, D.C. The role of serotonin N-acetyltransferase in the adrenergic regulation of indole metabolism in the pineal gland. In: Barchas J., Usdin E. Serotonin and Behavior. Academic Press, New York,, 1973, pp.109-120.
[61]
Binkley, S.A. Circadian rhythms of pineal function in rats. Endocr. Rev., 1983, 4, 255-270.
[62]
Nishino, H.; Koizume, K. Responses of neurons in the suprachiasmatic nuclei of the hypothalamus to putative transmitters. Brain Res., 1977, 120, 167-172.
[63]
Ebadi, M.; Govitrapong, P. Neural pathways and transmitters affecting melatonin synthesis. J. Neural Transm. Suppl., 1986, 21, 125-155.
[64]
Axelrod, J. The pineal gland: A neurochemical transducer. Science, 1974, 184, 1341-1348.
[65]
Reiter, R.J. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev., 1991, 12, 151-180.
[66]
Klein, D.C.; Moore, R.Y. Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: Control by the retino-hypothalamic tract and the suprachiasmatic nucleus. Brain Res., 1979, 174, 245-262.
[67]
Dijk, D.J.; Roth, C.; Landolt, H.P.; Werth, A.; Appli, M.; Acherman, P.; Barbely, A.A. Melatonin effect low frequency activity and enhancement of spindle frequency activity. Neurosci. Lett., 1995, 201, 13-16.
[68]
Lavie, P. Melatonin: Role in gating nocturnal rise in sleep propensity. J. Biol. Rhythms, 1997, 12, 657-665.
[69]
Sack, R.L.; Hughes, R.J.; Edgar, D.M.; Lewy, A.J. Sleep-promoting effects of melatonin: At what dose, in whom, under what conditions, and by what mechanisms? Sleep, 1997, 20, 908-915.
[70]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Triggiani, V. Vasopressin secretion control: Central neural pathways, neurotransmitters and effects of drugs. Curr. Pharm. Des., 2012, 18, 4714-4724.
[71]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Fiore, G.; Licchelli, B.; Iovino, E.; Triggiani, V. Role of central and peripheral chemoreceptors in vasopressin secretion control. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(3), 250-255.
[72]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Triggiani, V. Molecular mechanisms involved in the control of neurohypophyseal hormones secretion. Curr. Pharm. Des., 2014, 20, 6702-6713.
[73]
Iovino, M.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Guastamacchia, E.; Triggiani, V. Synaptic inputs of neural afferent pathways to vasopressin- and oxytocin-secreting neurons of supraoptic and paraventricular hypothalamic nuclei. Endocr. Metab. Immune Disord., 2016, 16, 276-287.
[74]
Trudel, E.; Bourque, C.W. Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nat. Neurosci., 2010, 13, 467-474.
[75]
Trudel, E.; Bourque, C.W. Circadian modulation of osmoregulated firing in rat supraoptic nucleus neurons. J. Neuroendocrinol., 2012, 24, 577-586.
[76]
Hanger, R.L.; Datzenberg, F.M. Regulation of the stress response by corticotropin-releasing factor receptors. In: Conn P.M., Freeman M.E. Neuroendocrinology in physiology and medicine. Totowa, Human Press, 2000, 261-87.
[77]
Moore, R.Y.; Eichler, V.P. Loss of a circadian adrenal corticosterone rhythm following suparchiasmatic lesions in the rat. Brain Res., 1972, 42, 201-206.
[78]
Swanson, L.W.; Cowan, W.M. The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J. Comp. Neurol., 1975, 160, 1-12.
[79]
Vrang, N.; Larsen, P.; Mikkelsen, J.D. Direct projection from the suprachiasmatic nucleus to hypophysioprophic coricotropin-releasing-factor immunoreactive cells in the paravenricular nucleus of the hypothalamus. Brain Res., 1995, 684, 61-69.
[80]
Buijs, R.M.; Wortel, J.; van Heerikhuize, J.; Feenstre, M.G.; Ter Horst, G.J.; Romijn, H.J.; Kalsbeek, A. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathways. Eur. J. Neurosci., 1999, 11, 1535-1544.
[81]
Watts, A.G.; Tanimura, S.; Sanchez-Watts, G. Corticotropin-releasing hormone and arginine vasopressin gene transcription in the hypothalamic paraventricular nucleus of unstressed rats: Daily rhythms and their interactions with corticosterone. Endocrinology, 2004, 145, 529-540.
[82]
Fries, E.; Dettenborn, L.; Hirshbaum, C. The cortisol awakening response (CAR): Facts and future directions. Int. J. Psychophysiol., 2009, 72, 67-73.
[83]
Perras, B.; Marshall, L.; Kohler, G.; Born, J.; Fehm, H.L. Sleep And endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged human. Psychoneuroendocrinology, 1999, 24, 743-757.
[84]
Steiger, A.; Guldner, J.; Hemmeter, V.; Rothe, B.; Wiedemann, K.; Holsboer, F. Effects of growth hormone-releasing hormone and somatostatin on sleep EEG and nocturnal hormone secretion in male controls. Neuroendocrinology, 1992, 56, 566-573.
[85]
Takahashi, Y.; Kipnis, D.M.; Daughaday, W.H. Growth hormone secretion during sleep. J. Clin. Invest., 1968, 47, 2079-2090.
[86]
Steiger, A.; Antonijevic, I.A.; Bohlhalter, S.; Frieboes, R.M.; Friess, E.; Murck, H. Effects of hormone on sleep. Horm. Res., 1999, 49, 125-130.
[87]
Schrier, T.; Guldner, J.; Colla, M.; Holsber, F.; Steiger, A. Changes in sleep-endocrine activity after growth hormone-releasing hormone depend on time of administration. J. Neuroendocrinol., 1997, 9, 201-205.
[88]
Edgar, D.M.; Dement, W.C.; Fuller, C.A. Effect of SCN lesions on sleep in squirrel monkeys: Evidence for opponent processes in sleep-wake regulation. J. Neurosci., 1993, 13, 1065-1079.
[89]
Curtis, A.L.; Lechner, S.M.; Pavcovich, L.A.; Valentino, R.J. Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion on corticotrophin-releasing factor: Effects on discharge rate, cortical norepinephrine levels and electroencephalographic activity. J. Pharmacol. Exp. Ther., 1997, 281, 163-172.
[90]
Curtis, A.L.; Pavcovich, L.A.; Valentino, R.J. Long-term regulation of locus coeruleus sensitività of corticotropin-releasing factor by swim stress. J. Pharmacol. Exp. Ther., 1999, 289, 1211-1219.
[91]
Nolte, J. Organization of the brainstem. In: The Human Brain. 5ht ed., Moby, St. Louis,, 2002, 262-90.
[92]
Takahashi, Y.; Kipnis, D.M.; Daughaday, W.H. Growth hormone secretion during sleep. J. Clin. Invest., 1968, 47, 2079-2084.
[93]
Prinz, P.N.; Weitzman, E.D.; Cunnigham, G.R.; Karakan, I. Plasma growth hormone during sleep in young and aged men. J. Gerontol., 1983, 38, 519-524.
[94]
Van Cauter, E.; Plat, L. Physiology of growth hormone secretion during sleep. J. Pediatr., 1996, 128, 532-537.
[95]
Van Cauter, E.; Leproult, R.; Plat, L. Age-related changes in slow waves sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA, 2000, 284, 861-868.
[96]
Beck, U.; Brezinova, V.; Hunter, W.M.; Osvald, I. Plasma growth hormone and slow wave sleep increase after interrumption of sleep. J. Clin. Endocrinol. Metab., 1975, 40, 812-815.
[97]
Karakan, I.; Rosenbloom, A.L.; London, J.H.; Williams, R.L.; Salis, P.J. Growth hormone levels during morning and after naps. Behav. Neuropsychiatry, 1975, 6, 67-70.
[98]
Sonntag, A.; Rothe, B.; Guldner, J.; Yassouridis, A.; Holsboer, F.; Setiger, A. Trimipramine and imipramine exert different effects on the sleep EEG and on nocturnal hormone secretion during treatment of major depression. Depression, 1996, 4, 1-13.
[99]
Steiger, A.; Guldner, J.; Hemmeter, U.; Rothe, B.; Wiedemann, K.; Holsboer, F. Effects of growth hormone-releasing hormone and somatostatin on sleep EEG and nocturnal hormone secretion in male controls. Neuroendocrinology, 1992, 56, 566-573.
[100]
Obal, F.; Payne, L.; Kapas, L.; Opp, M.; Krueger, J.M. Inhibition of growth hormone-releasing factor suppresses both sleep and growth hormone secretion in rat. Brain Res., 1991, 557, 149-153.
[101]
Chicara, K.; Kalo, Y.; Maeda, K.; Matsukura, S.; Imura, H. Suppression by cyproheptadine of human growth hormone and cortisol secretion during sleep. J. Clin. Invest., 1976, 57, 1393-1402.
[102]
Koulu, M.; Pihlajamaki, K.; Hupponen, R. Effect of the benzodiazepine derivative, diazepam, on clonidine-stimulated growth hormone secretion. J. Clin. Endocrinol. Metab., 1983, 56, 1316-1318.
[103]
Sassin, J.F.; Frantz, A.G.; Kapen, S.; Weitzman, E.D. The nocturnal rise of human prolactin is dependent on sleep. J. Clin. Endocrinol. Metab., 1973, 37, 436-440.
[104]
Sassin, J.F.; Frantz, A.G.; Weitzman, E.D.; Kapen, S. Human prolactin: 24-hour pattern with increased release during sleep. Science, 1972, 177, 1205-1207.
[105]
Spiegel, K.; Follenius, M.; Simon, C.; Scini, J.; Ehrhart, J.; Brandenberger, G. Prolactin secretion and sleep. Sleep, 1994, 17, 20-27.
[106]
Spiegel, K.; Luthringer, R.; Follenius, M.; Schaltenbrand, N.; Macher, J.P.; Braudenberger, G. Temporal relationship between prolactin secretion and slow-wave electroencephalic activity during sleep. Sleep, 1995, 18, 543-548.
[107]
Linkowski, P.; Spiegel, K.; Kerkhofs, M.; L’Hermite-Baleriaux, M.; Van Onderbergen, A.; Leproult, R.; Mendlewicz, T.; Van Cauter, E. Genetic and environmental influences on prolactin secretion during wake and during sleep. Am. J. Physiol., 1998, 274, E909-E919.
[108]
Shechter, A.; Boivin, D.B. Sleep, hormones and circadian rhythms throughout the menstrual cycle in healthy women with premenstrual dysphoric disorder. Int. J. Endocrinol., 2010, 2010, 259345.
[109]
Machado, F.B.; Rocha, M.R.; Sucheki, D. Brain prolactin is involved in stress- induced REM sleep rebound. Horm. Behav., 2017, 89, 38-47.
[110]
Obal, F.; Payne, L.; Kacsoh, B.; Opp, M.; Kapas, L.; Grosvenor, C.E.; Krueger, J.M. Involvement of PRL in REM sleep-promoting activity of systemic vasoactive intestinal peptide. Brain Res., 1994, 645, 143-149.
[111]
Obal, F.; Garcia-Garcia, I.; Kacsoh, B.; Taishi, P.; Horseman, N.D.; Krueger, J.M. Rapid eye movements sleep is reduced in prolactin-deficient mice. J. Neurosci., 2005, 25, 10282-10289.
[112]
Boyar, R.; Finkelstein, J.W.; Roffwarg, H.; Kapen, S.; Weitzman, D.; Hellman, L. Twenty-four hour luteinizing hormone and follicle-stimulating hormone secretory patterns in gonadal dysgenesis. J. Clin. Endocrinol. Metab., 1973, 37, 521-525.
[113]
Boyar, R.; Finkelstein, J.W.; Roffwarg, H.; Kapen, S.; Weitzman, D.; Hellman, L. Synchronization of augmented luteinizing hormone secretion with sleep during puberty. New . Engl. J. Med., 1972, 287, 582-586.
[114]
Boyar, R.; Perlow, M.; Hellman, L.; Kapen, S.; Weitzman, E. Twenty-four hour pattern of luteinizing hormone secretion in normal men with sleep stage. J. Clin. Endocrinol. Metab., 1972, 35, 73-81.
[115]
Wenning, J.K.; Delemarre-van de Waal, H.A.; Schoemaker, R.; Schoemaker, H.; Schoemaker, J. Luteinizing hormone and follicle stimulating hormone patterns in boys throughout puberty measured using highly sensitive immunoradiometric assay. Clin. Endocrinol., 1989, 31, 551-564.
[116]
Shaw, N.D.; Butler, J.P.; Mc Kinney, S.M.; Nelson, S.A.; Ellenbogen, J.M.; Hall, J.E. Insights into puberty: The relationship between sleep stages and pulsatile LH secretion. J. Clin. Endocrinol. Metab., 2012, 97, E2055-E2062.
[117]
Rossmanith, W.G. The impact of sleep on gonadotropin secretion. Gynecol. Endocrinol., 1998, 12, 381-389.
[118]
Touzet, R.; Rabillond, M.; Boehringer, H.; Barrauco, E.; Echochard, R. Relationship between sleep and secretion of gonadotropin and ovarian hormones in women with normal cycles. Fertil. Steril., 2002, 77, 738-744.
[119]
Boyar, R.M.; Rosenfeld, R.S.; Kapen, S.; Finkelstein, J.W.; Roffwarg, H.P.; Weitzman, E.D.; Helman, L. Human puberty simultaneous augmented secretion of luteinizing hormone and testosterone during sleep. J. Clin. Invest., 1974, 54, 609-618.
[120]
Gary, K.A.; Winckner, A.; Douglas, S.D.; Kapoor, S.; Zaugg, L.; Dinges, D.F. Total sleep deprivation and the thyroid axis: Effects of sleep and waking activity. Aviat. Space Environ. Med., 1996, 67, 513-519.
[121]
Parker, D.C.; Rossman, L.G.; Pekary, A.E.; Hershman, J.M. Effects of 64-hour sleep deprivation of the circadian waveform of thyrotropin (TSH): Further evidence of sleep-related inhibition of TSH release. J. Clin. Endocrinol. Metab., 1987, 64, 157-161.
[122]
Goichot, B.; Braudenberger, G.; Saini, J.; Wittersheim, G.; Follonius, M. Nocturnal plasma thyrotropin variations are related to slow-wave sleep. J. Sleep Res., 1992, 1, 186-190.
[123]
Attal, P.; Chanson, P. Endocrine aspects of obstructive sleep apnea. J. Clin. Endocrinol. Metab., 2010, 95, 483-495.
[124]
Duarte, F.H.; Jallad, R.S.; Amaro, A.C.; Drager, L.F.; Lorenzi-Filho, G.; Bronstein, M.D. The impact of sleep apnea treatment on carbohydrate metabolism in patients with acromegaly. Pituitary, 2013, 16, 341-350.
[125]
Cannavò, S.; Condurso, R.; Ragonese, M.; Ferraù, F.; Alibrandi, A.; Aricò, I.; Romanello, G.; Squadrito, S.; Trimarchi, F.; Silvestri, R. Increased prevalence of restless leg syndrome in patients with acromegaly and effects on quality of life assessed by Acro-QoL. Pituitary, 2011, 14, 328-334.
[126]
Biurmasz, N.R.; Joustra, S.D.; Douga, E.; Pereira, A.M.; van Duinen, N.; Van Dijk, M. Patients previously treated for nonfunctioning pituitary macroadenomas have disturbed sleep characteristics, circadian movement rhythm and subjective sleep quality. J. Clin. Endocrinol. Metab., 2011, 96, 1524-1532.
[127]
Joustra, S.D.; Thijs, R.D.; van den Berg, R.; van Dijk, M.; Pereira, A.M.; Lammers, G.; van Someren, E.J.W.; Romijn, J.A.; Biermasz, N.R. Alterations in diurnal rhythmicity in patients treated for nonfunctioning pituitary macroadenoma: A controlled study and literature review. Eur. J. Endocrinol., 2014, 171, 217-228.
[128]
Thorpy, M.J. Classification of sleep disorders. Neurotherapeutics, 2012, 9, 687-701.
[129]
Bamford, C.R. Menstrual-associated sleep disorder: An unusual hypersomniac variant associated with both menstrual and amenorrhea with a possible link to prolactin and metoclorpropamide. Sleep, 1993, 16, 484-486.
[130]
Gadoth, N.; Dikerman, Z.; Bechar, M.; Laron, Z.; Lavie, P. Episodic hormone secretion during sleep in Kleine-Levin syndrome: Evidence for hypothalamic dysfunction. Brain Dev., 1987, 9, 309-315.
[131]
Chesson, A.; Levine, S.; Kong, L.; Lee, S. Neuroendocrine evaluation in Kleine-Levin syndrome: Evidence of reduced dopaminergic tone during periods of hypersomnolence. Sleep, 1991, 14, 226-232.
[132]
Carranza-Lira, S.; Garcia Lopez, F. Melatonin and climatery. Med. Sci. Monit., 2000, 6, 1209-1212.
[133]
Gursoy, A.Y.; Kiseli, M.; Caglar, G.S. Melatonin in aging women. Climacteric, 2015, 18, 790-796.
[134]
Marcolina, S.T.; Rosenshein, B. Insomnia in women: Menopause and melatonin. Part III of III-Part; Series, 2008.
[135]
Eichling, P.S.; Sahni, J. Menopause related sleep disorders. J. Clin. Sleep Med., 2005, 1, 291-300.
[136]
Rohr, U.D.; Herold, J. Melatonin deficiencies in women. Maturitas, 2002, 41(Suppl. 1), 85-104.
[137]
Bortolato, B.; Berk, M.; Maes, M.; McIntyre, R.S.; Carvalho, A.F. Fibromyalgia and bipolar disorders: Emerging, epidemiological associations and shared pathophysiology. Curr. Mol. Med., 2016, 16, 119-136.
[138]
Balbo, M.; Leproult, R.; Van Cauter, E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int. J. Endocrinol., 2010, 2010, 759234.
[139]
Koatsu, N.D.; Tsai, R.; Young, T.; Vaugilder, R.; Burmesister, L.F.; Stromquist, A.M. Sleep duration and body mass index in a rural population. Arch. Intern. Med., 2006, 166, 1701-1705.
[140]
Gupta, N.K.; Mueller, W.H.; Chan, W.; Meninger, J.C. Is obesity associated with poor sleep quality in adolescents? Am. J. Hum. Biol., 2002, 14, 762-768.
[141]
Patel, S.R.; Hu, F.B. Short sleep duration and weight gain: A systematic review. Obesity., 2008, 16, 643-653.
[142]
Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet, 1999, 354, 1435-1439.
[143]
Spiegel, K.; Tasali, E.; Penev, V.; Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased levels of leptin, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med., 2004, 141, 846-850.
[144]
Taheri, S. The link beween short sleep duration and obesity: We should recommend more sleep to prevent obesity. Arch. Dis. Child., 2006, 91, 881-884.
[145]
Marquet, P. Sleep function and cerebral metabolism. Behav. Brain Res., 1995, 69, 75-83.
[146]
Simon, C.; Granfier, C.; Schlienger, J.L.; Braudenberger, G. Circadian and ultradian variations of leptin in normal men under continuous enteral nutrition: Relationship to sleep and body temperature. J. Clin. Endocrinol. Metab., 1998, 83, 1893-1899.
[147]
Copinschi, G. Metabolic and endocrine effects of sleep deprivation. Essent. Psychopharmacol., 2005, 6, 341-347.
[148]
Hewson, A.K.; Dickson, S.L. Systemic administration of ghrelin induces Fos and Erg-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J. Neuroendocrinol., 2000, 12, 1047-1049.
[149]
Kalinchuk, A.V.; McCarley, R.W.; Stenberg, D.; Porkka-Heiskanen, T.; Basheer, R. The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: Lessons from 192 IgG-saporin. Neuroscience, 2008, 157, 238-253.
[150]
Halassa, M.M.; Florian, C.; Follin, T.; Munoz, J.R.; Lee, S.Y.; Abel, T.; Haydon, P.G.; Frank, M.G. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 2009, 61, 213-219.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy